
Network Manager IP Edition
Version 3 Release 9

Discovery Guide

SC27-2762-04

���

Network Manager IP Edition
Version 3 Release 9

Discovery Guide

SC27-2762-04

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 367.

This edition applies to version 3.9 of IBM Tivoli Network Manager IP Edition (product number 5724-S45) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables vii

About this publication ix
Audience ix
What this publication contains ix
Publications x
Accessibility xiii
Tivoli technical training xiv
Support information xiv
Conventions used in this publication xiv

Chapter 1. About discovery 1
About types of discovery 1
Scopes 2

Types of scoping 3
Defining discovery zones to restrict discovery . . 3

Seeds 4
Device access 4
Agents 4
Filters 5
Domain Name System 7
Network address translation 7
Advanced settings 8
Context-sensitive discovery 8
Helpers 9
Specialized discoveries 9

Chapter 2. Configuring network
discovery 11
Planning for discovery. 11
Discovering the network using the wizard 12

Launching the wizard 12
Choosing a scoped or unscoped discovery . . . 12
Configuring SNMP access using the wizard . . 13
Configuring Telnet access using the wizard . . . 14
Specifying type of discovery 14
Optimizing the discovery 15
Indicating the reliability of your network . . . 16
Reviewing the configuration 16

Discovering the network using the GUI 17
Scoping discovery 17
Seeding discovery 20
Configuring device access 23
Activating agents 27
Setting discovery filters 28
Configuring Domain Name System 31
Configuring NAT translation 33
Configuring a multicast discovery 34
Advanced discovery parameters 37
Starting a discovery 43
Schemas and tables for GUI discovery
parameters 46

Discovering the network using the command-line
interface 47

Discovery configuration files 47

Retrieving extra information 81
Administering traps 85

Configuring specialized discoveries 88
Configuring EMS discoveries 88
Configuring a context-sensitive discovery . . . 102
Configuring MPLS discoveries. 102
Configuring NAT discoveries 115

Chapter 3. Monitoring network
discoveries 131
Monitoring network discovery from the GUI . . . 131

Monitoring discovery progress 131
Comparing discoveries 132
Monitoring ping finder progress 133
Monitoring discovery agent progress 134

Monitoring discovery from the command line. . . 136
Sample discovery status queries 137
Sample device queries 139
Sample network entity queries 142
Sample complex discovery queries 142
Sample queries for locating a specific device . . 144

Chapter 4. Classifying network
devices 147
Changing the device class hierarchy 147

Listing the existing device classes 147
Creating and editing AOC files 148
Applying AOC changes to the topology and to
the reports 148

AOC file samples 150
EndNode class 150
NetworkDevice class 151
AOC specific to device class 152

Chapter 5. Keeping discovered
topology up-to-date. 155
Scheduling a discovery 155
Configuring automatic discovery 155
Manually discovering a device or subnet 156

Manually discovering a device or subnet using
the GUI 156
Manually discovering a device or subnet from
the command line 160

Removing a device from the network 160
Setting the linger time for a device 161

Manually updating device details 161

Chapter 6. Troubleshooting discovery 163
Troubleshooting discovery with reports. 163
Monitoring discovery status 164

Process flow for creating discovery events . . . 164
Monitoring discovery status messages 165

Troubleshooting discovery agents. 165
Troubleshooting an unusually long discovery 165

© Copyright IBM Corp. 2006, 2013 iii

Identifying failed agents 167
Troubleshooting missing devices 167
Troubleshooting an idle discovery 168
Removing discovery cache files 168
Troubleshooting illegal characters in the Informix
database 169

Chapter 7. Enriching the topology . . 171
Adding tags to entities 171

Customizing the discovery 171
Enabling polling and visualization using the
custom tags 178
Visualizing the enriched topology 179
Polling the enriched topology 181

Appendix A. Discovery databases . . 183
Discovery engine database 183

disco.config table 183
disco.managedProcesses table 190
disco.status table 191
disco.agents table 193
disco.NATStatus table 195
disco.dynamicConfigFiles table 195
disco.tempData table 196
disco.profilingData table. 196
disco.events table 197
disco.ipCustomTags table 198
disco.filterCustomTags table 198
Example configuration of the disco.config table 199
Example configuration of the
disco.managedProcesses table 199
Example configuration of the disco.agents table 200

Discovery scope database 201
disco.scope database schema 201
Example scope database configuration 207

Access databases 210
snmpStack database 211
telnetStack database 215

Process management databases 216
Configuring the data flow: starting stitchers
on-demand 216
agents database schema 217
Stitchers database schema 218

Subprocess databases 220
finders database schema. 220
Details database schema 223

Finders databases 225
collectorFinder database 226
fileFinder database 229
pingFinder database 230

The Helper Server databases 233
The ARPhelper database. 234
DNS helper database schema 236
Ping helper database schema 238
SNMP helper database schema 241
Telnet helper database schema. 243
XMLRPC helper database schema 245

Individual helpers databases 248
The ARP helper database 248
The DNS helper database 248

The Ping helper database 249
The SNMP helper database 250
The Telnet helper database 251
The XMLRPC helper database 252

Tracking discovery databases 253
translations database 253
instrumentation database schema. 256
workingEntities database 259

Working topology databases 262
fullTopology database schema 262
scratchTopology database schema 263

rediscoveryStore database 265
rediscoveryStore.dataLibrary table 265
rediscoveryStore.rediscoveredEntities table . . 265

Topology manager database 265
master database schema 266
model database schema 268

Failover database 270
Ignored cached data 271
The failover database schema 271
Example failover database configuration . . . 273

Agent Template database 274
Discovery agent despatch table 275
Discovery agent returns table 276

Appendix B. Discovery process . . . 277
Discovery subprocesses 277
Discovery timing 278
Discovery stages and phases 280

Data processing stage 281
Data collection stage 281
Advantages of staged discovery 283
Criteria for multiphasing 284
Managing the phases 285

Discovery cycles 285
Discovering device existence 286
Discovering device details (standard) 287
Discovering device details (context-sensitive) 288
Discovering associated device addresses . . . 289
Discovering device connectivity 291
Creating the topology 292
Broadcast of discovery data 293

Advanced discovery configuration options . . . 293
Configurable discovery data flow. 294
Partial matching 294

Discovery process with EMS integration 295
Discovering device existence with collectors . . 295
Discovering basic device information 297
Discovering detailed device information . . . 298

Rediscovery 299
Full and partial rediscovery 299
Rediscovery completion 301

Appendix C. Discovery agents 303
Agents 303

Details agent 304
Associated Address (AssocAddress) agent . . . 304
Interface data retrieved by agents 305
Discovery agent definition file keywords . . . 305

Types of agents 311

iv IBM Tivoli Network Manager IP Edition: Discovery Guide

Discovering connectivity among Ethernet
switches 311
Connectivity at the layer 3 network layer . . . 316
Topology data stored in an EMS 320
Discovering connectivity among ATM devices 321
Discovering MPLS devices 322
Multicast agents 323
Discovering NAT gateways. 324
Discovering containment information 325
Discovery agents on other protocols 327
Context-sensitive discovery agents 329
Task-specific discovery agents 330
Discovery agents for IPv6 335

Guidance for selecting agents 336
Which IP layer agents to use 336
Which standard agents to use 336
Which specialized agents to run 337
Suggested agents for a layer 3 discovery . . . 338
Suggested agents for a layer 2 discovery . . . 338

Appendix D. Helper System 339
Helpers 339
Helper System operation 340
Dynamic timeouts 340

Appendix E. Discovery stitchers . . . 341
Main discovery stitchers. 341

Appendix F. Types of traps 361

Appendix G. Network Manager
glossary 363

Notices 367
Trademarks 369

Index 371

Contents v

vi IBM Tivoli Network Manager IP Edition: Discovery Guide

Tables

1. Ping response times for IPv6 subnet masks 22
2. Schemas and tables to which the discovery

parameters are mapped 46
3. User-editable discovery configuration files 48
4. Variables used to populate the

master.entityByNeighbor table 85
5. Commands used to control the ncp_trapmux

process 87
6. Collecting topology data from EMS during

discovery 89
7. Components of EMS integration 90
8. Explanation of command-line options 99
9. Number of pseudowires for an enhanced

Layer 2 VPN. 103
10. AsAgent agent 107
11. Format of ASMap.txt file 107
12. RT-based discovery and LSP-based discovery 108
13. Defining MPLS scoping requirements 113
14. NAT information added to a device record 118
15. Quick reference for NAT discovery

configuration. 118
16. Format of NATGateways.txt file 125
17. Discovery phase status 132
18. Ping finder status 133
19. Agent states 134
20. IP address states 136
21. Example of data from the NCIM topology

database mappings table 149
22. Report categories to use for discovery

troubleshooting 163
23. Agent states 166
24. IP address states 166
25. Example of name-value pair tags 171
26. Example of name-value pair tags 173
27. Example of name-value pair tags 175
28. Example of name-value pair tags 176
29. Line-by-line description of the

GetCustomTag.stch stitcher 177
30. disco.config database table schema 183
31. disco.managedProcesses database table

schema 190
32. disco.status database table schema 191
33. disco.agents database table schema 193
34. disco.NATStatus database table schema 195
35. disco.dynamicConfigFiles database table

schema 195
36. disco.tempData database table schema 196
37. disco.profilingData database table schema 196
38. disco.events database table schema 197
39. disco.ipCustomTags database table schema 198
40. disco.filterCustomTags database table schema 198
41. scope.detectionFilter database table schema 201
42. scope.inferMPLSPEs database table schema 202
43. scope.instantiateFilter database table schema 203
44. scope.zones database table schema 203
45. scope.multicastGroup database table schema 204

46. scope.multicastSource database table schema 205
47. scope.special database table schema 206
48. scope.zones database table schema 207
49. snmpStack.accessParameters database table

schema. 211
50. snmpStack.configuration database table

schema 212
51. snmpStack.conversion database table schema 213
52. snmpStack.multibyteObjects database table

schema 213
53. snmpStack.verSecurityTable database table

schema 214
54. telnetStack.passwords database table schema

. 215
55. agents.definitions database table schema 217
56. agents.victims database table schema 217
57. agents.status database table schema 218
58. stitchers.definitions database table schema 218
59. stitchers.triggers database table schema 219
60. stitchers.status database table schema 219
61. stitchers.actions database table schema 220
62. finders.despatch database table schema 221
63. finders.returns database table schema 221
64. finders.pending database table schema 222
65. finders.processing database table schema 222
66. finders.rediscovery database table schema 223
67. Details.despatch database table schema 224
68. Details.returns database table schema 224
69. Description of the finders 225
70. collectorFinder.collectorRules database table

schema 226
71. collectorFinder.configuration database table

schema 228
72. fileFinder.configuration database table schema 229
73. fileFinder.parseRules database table schema 229
74. pingFinder.configuration database table

schema 230
75. pingFinder.pingFilter database table schema 231
76. pingFinder.pingRules database table schema 232
77. pingFinder.scope database table schema 233
78. ARPHelper.ARPHelperTable database table

schema 234
79. ARPHelper.ARPHelperConfig database table

schema 234
80. DNSHelper.DNSHelperTable database table

schema 236
81. DNSHelper.DNSHelperConfig database table

schema 236
82. PingHelper.PingHelperTable database table

schema 238
83. PingHelper.PingHelperConfig database table

schema 239
84. pingHelper.configuration database table

schema 240
85. SnmpHelper.SnmpHelperTable database table

schema 241

© Copyright IBM Corp. 2006, 2013 vii

86. SnmpHelper.SnmpHelperConfig database
table schema 242

87. TelnetHelper.TelnetHelperTable database table
schema 243

88. TelnetHelper.TelnetHelperConfig database
table schema 244

89. XmlRpcHelper.XmlRpcHelperTable database
table schema 246

90. XmlRpcHelper.XmlRpcHelperConfig database
table schema 246

91. ARPHelper.configuration database table
schema 248

92. DNSHelper.configuration database table
schema 248

93. DNShelper.methods database table schema 248
94. pingHelper.configuration database table

schema 249
95. snmpHelper.configuration database table

schema 250
96. telnetHelper.configuration database table

schema 251
97. telnetHelper.deviceConfig database table

schema 251
98. xmlRpcHelper.configuration database table

schema 252
99. translations.ipToBaseName database table

schema 253
100. translations.vlans database table schema 254
101. translations.NAT database table schema 255
102. translations.NATtemp database table schema 255
103. translations.NATAddressSpaceIds database

table schema 255
104. instrumentation.ipAddresses database table

schema 256
105. instrumentation.name database table schema 257
106. instrumentation.subNet database table

schema 257
107. instrumentation.vlan database table schema 257
108. instrumentation.frameRelay database table

schema 257
109. instrumentation.ciscoFrameRelay database

table schema 258
110. instrumentation.hsrp database table schema 258
111. instrumentation.pnniPeerGroup database

table schema 258
112. instrumentation.fddi database table schema 259
113. workingEntities.finalEntity database table

schema 259
114. workingEntities.containment database table

schema 261

115. workingEntities.interfaceMapping database
table schema 261

116. fullTopology.entityByNeighbor database table
schema 262

117. scratchTopology.entityByName database table
schema 263

118. rediscoveryStore.dataLibrary database table
schema 265

119. rediscoveryStore.rediscoveredEntities
database table schema 265

120. MODEL (ncp_model) databases 265
121. master.entityByName database table schema 266
122. master.entityByNeighbor database table

schema 267
123. master.containers database table schema 268
124. model.config database table schema 269
125. model.profilingData database table schema 269
126. model.statistics database table schema 270
127. failover.config database table schema 271
128. failover.status database table schema 272
129. failover.findRateDetails database table

schema 272
130. failover.doNotCache database table schema 273
131. failover.restartPhaseAction database table

schema 273
132. agentTemplate.despatch database table

schema 275
133. agentTemplate.returns database table schema 276
134. Discovery components 277
135. Data collection and data processing stages 279
136. Ethernet switch discovery agents 311
137. Layer 3 network layer agents 316
138. Routing protocol discovery agents 320
139. ATM discovery agents 321
140. MPLS discovery agents 322
141. Multicast discovery agents 323
142. NAT gateway agents 324
143. Discovery agents that discover containment

information 325
144. Discovery agents on other protocols 327
145. Context-sensitive discovery agents 329
146. Task-specific discovery agents 330
147. IPv6 agent template 335
148. Helpers available with Network Manager 339
149. List of Network Manager discovery stitchers 341
150. Types of traps 361
151. IBM trademarks. 369

viii IBM Tivoli Network Manager IP Edition: Discovery Guide

About this publication

IBM Tivoli Network Manager IP Edition provides detailed network discovery,
device monitoring, topology visualization, and root cause analysis (RCA)
capabilities. Network Manager can be extensively customized and configured to
manage different networks. Network Manager also provides extensive reporting
features, and integration with other IBM products, such as IBM Tivoli Application
Dependency Discovery Manager, IBM Tivoli Business Service Manager and IBM
Systems Director.

The IBM Tivoli Network Manager IP Edition Discovery Guide describes how to
administer and use Network Manager IP Edition to perform network discoveries.

Audience
This publication is for users and system and network administrators who configure
IBM Tivoli Network Manager IP Edition.

IBM Tivoli Network Manager IP Edition works in conjunction with IBM Tivoli
Netcool/OMNIbus; this publication assumes that you understand how IBM Tivoli
Netcool/OMNIbus works. For more information on IBM Tivoli Netcool/OMNIbus,
see the publications described in “Publications” on page x.

What this publication contains
This publication contains the following sections:
v Chapter 1, “About discovery,” on page 1

Describes the concept of discovery, and the parameters that can be set to
discover a network.

v Chapter 2, “Configuring network discovery,” on page 11
Describes the prerequisites that must be met before a discovery can be
configured and launched.
Also describes how to run discoveries using:
– The Discovery Wizard for performing an initial discovery, and for setting

basic discovery parameters.
– The Discovery Configuration GUI for setting advanced discovery parameters.
– The CLI and the configuration files to configure the discovery process.
There is also information on how to set complex discovery parameters, for
example using Element Management Systems, MPLS and NAT.

v Chapter 3, “Monitoring network discoveries,” on page 131
Describes how to monitor the state and progress of your network discovery
using the GUI or the command line.

v Chapter 4, “Classifying network devices,” on page 147
Describes how to change the way network devices are classified following
discovery.

v Chapter 5, “Keeping discovered topology up-to-date,” on page 155
Describes how to schedule a discovery, manually discover devices, and remove
devices.

v “Troubleshooting discovery with reports” on page 163

© Copyright IBM Corp. 2006, 2013 ix

Describes how to troubleshoot both the discovery process, and the network that
you want to discover.

v Appendix A, “Discovery databases,” on page 183
Describes the databases used by ncp_disco, the component that discovers
network device existence and connectivity, and by ncp_model, the component
that manages, stores, and distributes the discovered network topology.

v Appendix B, “Discovery process,” on page 277
Describes how IBM Tivoli Network Manager IP Edition produces a network
topology that includes connectivity and containment data.

v Appendix C, “Discovery agents,” on page 303
Describes the discovery agents available to run as part of your discovery. There
is also guidance on the agents to select, based on the characteristics of your
network.

v Appendix D, “Helper System,” on page 339
Provides background information on the helpers, which are specialized
applications that retrieve information from the network on demand.

v “Main discovery stitchers” on page 341
Describes the stitchers supplied with IBM Tivoli Network Manager IP Edition.

v Appendix F, “Types of traps,” on page 361
Describes the different types of traps that might be encountered by the Trap
finder.

Publications
This section lists publications in the Network Manager library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Network Manager library

The following documents are available in the Network Manager library:
v IBM Tivoli Network Manager IP Edition Release Notes, GI11-9354-00

Gives important and late-breaking information about IBM Tivoli Network
Manager IP Edition. This publication is for deployers and administrators, and
should be read first.

v IBM Tivoli Network Manager Getting Started Guide, GI11-9353-00
Describes how to set up IBM Tivoli Network Manager IP Edition after you have
installed the product. This guide describes how to start the product, make sure it
is running correctly, and discover the network. Getting a good network
discovery is central to using Network Manager IP Edition successfully. This
guide describes how to configure and monitor a first discovery, verify the results
of the discovery, configure a production discovery, and how to keep the network
topology up to date. Once you have an up-to-date network topology, this guide
describes how to make the network topology available to Network Operators,
and how to monitor the network. The essential tasks are covered in this short
guide, with references to the more detailed, optional, or advanced tasks and
reference material in the rest of the documentation set.

v IBM Tivoli Network Manager IP Edition Product Overview, GC27-2759-00
Gives an overview of IBM Tivoli Network Manager IP Edition. It describes the
product architecture, components and functionality. This publication is for
anyone interested in IBM Tivoli Network Manager IP Edition.

x IBM Tivoli Network Manager IP Edition: Discovery Guide

v IBM Tivoli Network Manager IP Edition Installation and Configuration Guide,
SC27-2760-00
Describes how to install IBM Tivoli Network Manager IP Edition. It also
describes necessary and optional post-installation configuration tasks. This
publication is for administrators who need to install and set up IBM Tivoli
Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Administration Guide, SC27-2761-00
Describes administration tasks for IBM Tivoli Network Manager IP Edition, such
as how to administer processes, query databases and start and stop the product.
This publication is for administrators who are responsible for the maintenance
and availability of IBM Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Discovery Guide, SC27-2762-00
Describes how to use IBM Tivoli Network Manager IP Edition to discover your
network. This publication is for administrators who are responsible for
configuring and running network discovery.

v IBM Tivoli Network Manager IP Edition Event Management Guide, SC27-2763-00
Describes how to use IBM Tivoli Network Manager IP Edition to poll network
devices, to configure the enrichment of events from network devices, and to
manage plug-ins to the Tivoli Netcool/OMNIbus Event Gateway, including
configuration of the RCA plug-in for root-cause analysis purposes. This
publication is for administrators who are responsible for configuring and
running network polling, event enrichment, root-cause analysis, and Event
Gateway plug-ins.

v IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide,
GC27-2765-00
Describes how to use IBM Tivoli Network Manager IP Edition to troubleshoot
network problems identified by the product. This publication is for network
operators who are responsible for identifying or resolving network problems.

v IBM Tivoli Network Manager IP Edition Network Visualization Setup Guide,
SC27-2764-00
Describes how to configure the IBM Tivoli Network Manager IP Edition network
visualization tools to give your network operators a customized working
environment. This publication is for product administrators or team leaders who
are responsible for facilitating the work of network operators.

v IBM Tivoli Network Manager IP Edition Management Database Reference,
SC27-2767-00
Describes the schemas of the component databases in IBM Tivoli Network
Manager IP Edition. This publication is for advanced users who need to query
the component databases directly.

v IBM Tivoli Network Manager IP Edition Topology Database Reference, SC27-2766-00
Describes the schemas of the database used for storing topology data in IBM
Tivoli Network Manager IP Edition. This publication is for advanced users who
need to query the topology database directly.

v IBM Tivoli Network Manager IP Edition Language Reference, SC27-2768-00
Describes the system languages used by IBM Tivoli Network Manager IP
Edition, such as the Stitcher language, and the Object Query Language. This
publication is for advanced users who need to customize the operation of IBM
Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Perl API Guide, SC27-2769-00
Describes the Perl modules that allow developers to write custom applications
that interact with the IBM Tivoli Network Manager IP Edition. Examples of

About this publication xi

custom applications that developers can write include Polling and Discovery
Agents. This publication is for advanced Perl developers who need to write such
custom applications.

v IBM Tivoli Monitoring for Tivoli Network Manager IP User's Guide, SC27-2770-00
Provides information about installing and using IBM Tivoli Monitoring for IBM
Tivoli Network Manager IP Edition. This publication is for system
administrators who install and use IBM Tivoli Monitoring for IBM Tivoli
Network Manager IP Edition to monitor and manage IBM Tivoli Network
Manager IP Edition resources.

Prerequisite publications

To use the information in this publication effectively, you must have some
prerequisite knowledge, which you can obtain from the following publications:
v IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC23-9680

Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

v IBM Tivoli Netcool/OMNIbus User's Guide, SC23-9683
Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

v IBM Tivoli Netcool/OMNIbus Administration Guide, SC23-9681
Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

v IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC23-9684
Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide SC23-9682
Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI.

Accessing terminology online

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows your PDF reading application to print
letter-sized pages on your local paper.

xii IBM Tivoli Network Manager IP Edition: Discovery Guide

http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center page is displayed for your country.
3. On the left side of the page, click About this site to see an information page

that includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

Accessibility features

The following list includes the major accessibility features in Network Manager:
v The console-based installer supports keyboard-only operation.
v The console-based installer supports screen reader use.
v Network Manager provides the following features suitable for low vision users:

– All non-text content used in the GUI has associated alternative text.
– Low-vision users can adjust the system display settings, including high

contrast mode, and can control the font sizes using the browser settings.
– Color is not used as the only visual means of conveying information,

indicating an action, prompting a response, or distinguishing a visual
element.

v Network Manager provides the following features suitable for photosensitive
epileptic users:
– Web pages do not contain anything that flashes more than two times in any

one second period.

The Network Manager Information Center, and its related publications, are
accessibility-enabled. The accessibility features of the information center are
described in Accessibility and keyboard shortcuts in the information center.

Extra steps to configure Internet Explorer for accessibility

If you are using Internet Explorer as your web browser, you might need to
perform extra configuration steps to enable accessibility features.

To enable high contrast mode, complete the following steps:

About this publication xiii

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.help.ic.doc/info_accessibility.html

1. Click Tools > Internet Options > Accessibility.
2. Select all the check boxes in the Formatting section.

If clicking View > Text Size > Largest does not increase the font size, click Ctrl +
and Ctrl -.

IBM® and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa

Conventions used in this publication
This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)

xiv IBM Tivoli Network Manager IP Edition: Discovery Guide

http://www.ibm.com/able
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa

v Emphasis of words and letters (words as words example: "Use the word
that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths

This publication uses environment variables without platform-specific prefixes and
suffixes, unless the command applies only to specific platforms. For example, the
directory where the Network Manager core components are installed is represented
as NCHOME.

When using the Windows command line, preface and suffix environment variables
with the percentage sign %, and replace each forward slash (/) with a backslash (\)
in directory paths. For example, on Windows systems, NCHOME is %NCHOME%.

On UNIX systems, preface environment variables with the dollar sign $. For
example, on UNIX, NCHOME is $NCHOME.

The names of environment variables are not always the same in the Windows and
UNIX environments. For example, %TEMP% in Windows environments is
equivalent to $TMPDIR in UNIX environments. If you are using the bash shell on
a Windows system, you can use the UNIX conventions.

About this publication xv

xvi IBM Tivoli Network Manager IP Edition: Discovery Guide

Chapter 1. About discovery

Configure discovery by setting the parameters that govern how the discovery is
performed.

About types of discovery
Different terms are used to describe network discovery, depending on what is
being discovered and how the discovery has been configured. You can run
discoveries, rediscoveries, full and partial discoveries, and you can set up
automatic discovery.

Discovery and rediscovery

Discovery
The term discovery is used generally to mean any kind of discovery.
Technically, only the first discovery that is run after the discovery engine,
ncp_disco, is started can properly be called a discovery, and every
discovery after that is a rediscovery. Because there is no discovery data in
memory yet, discoveries take slightly longer than rediscoveries.

Rediscovery
After a discovery has been run, any further discoveries that are run are
rediscoveries. Rediscoveries use a different data flow to discoveries, with
some different stitchers and databases. If ncp_disco is restarted, the next
discovery is again just a discovery, and further discoveries after that are
rediscoveries. Unless you are running advanced discoveries or modifying
the discovery data flow, the difference between a discovery and a
rediscovery is not usually important, and, for ease of reading, the
instructions in this information do not distinguish between discovery and
rediscovery unless it is necessary.

Full and partial discovery

Full discovery
A full discovery is a discovery run with a large scope, intended to discover
all of the network devices that you want to manage. Full discoveries are
usually just called discoveries, unless they are being contrasted with partial
discoveries.

Partial discovery
A partial discovery is a subsequent rediscovery of a section of the
previously discovered network. The section of the network is usually
defined using a discovery scope consisting of either an address range, a
single device, or a group of devices. A partial discovery relies on the
results of the last full discovery, and can only be run if the discovery
engine, the ncp_disco process, has not been stopped since the last full
discovery. A partial discovery is, therefore, actually a type of rediscovery.

Automatic and scheduled discovery

You can run discoveries on demand, using the wizard, the GUI, or the command
line. You can also configure discovery to start automatically.

© Copyright IBM Corp. 2006, 2013 1

Automatic discovery
After a discovery has finished, the discovery process enters a reactive state,
known as rediscovery mode, in which another discovery can be triggered
automatically by receipt of a trap from a network device.

Scheduled discovery
You can schedule a discovery to start at a certain time.

Related concepts:
“Full and partial rediscovery” on page 299
By modifying the stitchers, you can configure the way DISCO treats devices that
are found in the rediscovery mode.
Related tasks:
“Scheduling a discovery” on page 155
After a full discovery has completed, you can schedule further discoveries by
editing the FullDiscovery.stch file.
“Starting a discovery” on page 43
After you configure a discovery, you can start and, if necessary, stop the discovery.
“Starting partial discovery from the GUI” on page 158
Starting a partial discovery involves defining a seed and scopes.
“Configuring automatic discovery” on page 155
Network Manager provides a mechanism to automatically trigger a partial
discovery based on receipt of a trap. This is performed by the Disco plug-in to the
Event Gateway. Device traps might indicate a change in a network device or the
presence of a new network device.For more information on the Disco plug-in, see
the IBM Tivoli Network Manager IP Edition Event Management Guide.

Scopes
Define the zones of the network (that is, subnet ranges) that you want to include
in the discovery, and the zones that you want to exclude. The areas of the network
to be included in the discovery process, or excluded from the discovery process are
collectively known as the discovery scope.

There are several benefits to limiting the discovery scope:
v It is important to limit discovery scope because the range of IP addresses

considered by the default discovery process is potentially unlimited. Without a
scope, the discovery attempts to recognize every network device. By limiting the
scope, you can concentrate on the important areas of your network.
Attention: If there are routes out of your network to the Internet, then an
unscoped discovery will find these routes and proceed to discover parts of the
Internet.

v You might also want to restrict the scope of the discovery to control the
discovery of sensitive devices that you do not want to poll. A device might be
considered sensitive because there is a security risk involved in polling the
device, or because polling might overload the device. You can specify that
particular devices are discovered but not instantiated to an AOC definition (such
devices are discovered but are not represented in the network topology and their
details are not sent to MODEL). You can also restrict devices from being
discovered (SNMP access to any such device is not attempted).

v Another reason for scoping the discovery is that it restricts the amount of data
Network Manager tries to download from the routing tables of individual
routers. Without this restriction, if Network Manager finds a router that knows
the routing table for the whole Internet, then discovery takes a very long time to
complete.

2 IBM Tivoli Network Manager IP Edition: Discovery Guide

Restriction: Network Manager does not support the IPv4–mapped IPv6 format
and expects all IPv6 addresses to be in standard colon-separated IPv6 format. For
example, Network Manager does not aupport an IPv4–mapped IPv6 address such
as ::ffff:192.0.2.128. Instead this address must be entered as ::ffff:c000:280
(standard colon-separated IPv6 format).

Types of scoping
Network Manager offers several types of scoping.

You can enable the following types of scoping:
v You can include or exclude areas of your network (either subnet ranges or

specific devices) in the discovery. Each configured area is referred to as a zone.

Tip: If your subnet is sparsely populated, including individual routers is likely
to result in a faster discovery than including the whole subnet.

v Zones can be specified within zones: within a given inclusion zone, you can
specify devices or subnets that are not to be detected. These devices are not
pinged by the Ping finder or interrogated by the discovery agents. For example,
you can define an include scope zone consisting of the Class B subnet 1.2.0.0/16,
and within that zone you can specify an exclude scope zone consisting of the
Class C subnet 1.2.3.0/24. Finally, within the exclude scope zone you could
specify an include scope zone 1.2.3.128/26.

v You can configure a filter that determines whether a discovered device is
interrogated for connectivity information.

v You can configure a filter that determines whether a device within a defined
zone is to be instantiated. If a device is instantiated, it is displayed on the
network map. Devices that are not instantiated are not sent to MODEL.

v You can configure multicast scoping. This enables you to configure which
multicast subnets to use as scopes for your multicast discovery.

Defining discovery zones to restrict discovery
To restrict the discovery, you must define discovery zones. You can define
discovery zones in several ways.

Choose one of the following methods to define a discovery zone:
v Define discovery zones using the Discovery Configuration GUI.
v Construct zones by appending an OQL insert into the scope.zones table with the

DiscoScope.cfg configuration file. This method is for more experienced users.

Note: If nothing is specified in the scope.zones table then everything is considered
to be in scope.

For each zone you must specify the following information:
v The type of network protocol used by the zone, although currently only IP is

supported. You can define as many zones as necessary. Multiple zones can also
be defined within the same insert.

v The action to be taken for the zone, where m_action=1 means include in the
discovery, and m_action=2 means exclude. You can define both inclusion and
exclusion zones. The action to be taken in the smallest zone overrides the actions
in the larger zones.

v A list of varbinds (name=value) that define the present discovery zone.

Chapter 1. About discovery 3

Related tasks:
“Defining multiple inclusion zones” on page 19
You can define multiple inclusion zones in the scope.zones table.
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.

Seeds
Configure seeds to specify the locations from which to begin discovering devices.
Discovery seeds can be IP addresses, or subnet addresses.

You can specify seeds in several ways:
v Using the Ping finder: You specify the IP addresses or subnet addresses to

discover first.
v Using the File finder: You provide one or more files that each contain a list of IP

addresses or subnet addresses.

Tip: To restrict discovery to a list of specific devices, seed the discovery with a list
of devices using the File finder or the Ping finder, and disable feedback in the
Advanced tab of the Network Discovery Configuration GUI.
Related reference:
“Advanced discovery parameters” on page 37
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.

Device access
Configure device access by specifying SNMP community strings and Telnet
parameters so that the system can access network devices.

Configure device access as follows:
v Specify SNMP community strings so that Network Manager can access and

interrogate the network devices that use SNMP. Network Manager supports
SNMP v1, v2, and v3,

v Specify Telnet parameters so that Network Manager can access and interrogate
the network devices that use Telnet.

Agents
Use discovery agents to retrieve information about devices on the network. Select
the right agents for your discovery depending on your network type.

Discovery agents retrieve device details and investigate device connectivity. They
can also report the existence of new devices by finding new connections when
investigating device connectivity. The discovery agents can be used for specialized
tasks. For example, the ARP Cache discovery agent populates the Helper Server
database with IP address to MAC address mappings.

Default agents are provided for the type of discovery you want to perform, for
example a layer 2 or layer 3 discovery. You can select different sets of agents for
full discoveries and for partial discoveries. The agents vary because connectivity

4 IBM Tivoli Network Manager IP Edition: Discovery Guide

information varies with the technology of the hardware in the network.

Filters
Use prediscovery filters to increase the efficiency of discovery and post-discovery
filters to prevent instantiation of devices.

After you have defined the scope of your discovery using the Scope tab, it is
possible to restrict the scope using filters. For example, you might want to
maintain the scope zones that you defined earlier but restrict the scope based on
location (for example, New York hardware only) or based on hardware supplier
(for example, Cisco devices only).

You can filter out devices based on a variety of criteria, including location,
technology, and manufacturer.

By default, the discovery filters do not filter out the Network Manager host
because it usually also serves as the polling station for root cause analysis. For root
cause analysis to work correctly, the polling station, and hence the Network
Manager host machine, must be part of the topology.

For more information on root cause analysis, see the IBM Tivoli Network Manager IP
Edition Administration Guide and the IBM Tivoli Network Manager IP Edition Network
Troubleshooting Guide.

If you do need to filter out the Network Manager host, then you need to modify
the following stitchers and remove the sections of code, indicated by comments,
that prevent the Network Manager host from being filtered. The stitchers are
DetectionFilter.stch and InstantiationFilter.stch.

Prediscovery filter

You might want to apply this filter to sensitive devices that you do not want to
poll. A device might be considered sensitive because there is a security risk
involved in polling the device, or because polling might cause the device to
overload.

Prediscovery filters prevent the discovery from retrieving detailed data or
connectivity data from the device and prevent discovered devices from being
polled for connectivity information. Only devices matching the prediscovery filter
are fully discovered. If no prediscovery filter is defined, then all devices within the
scope are discovered.

Prediscovery filters provide a mechanism to base discovery on complex IP ranges
that cannot be easily defined in the Scope tab. It can be used to filter out devices
based on their sysObjectId value. Default filters exist to filter out end nodes,
printers, and similar devices. You can create quite complex multiple filters, which
makes this feature very powerful but try to ensure that filters are designed so that
they can be easily maintained. The filter acts on the fields of the details.returns
OQL table in the discovery (Disco) service, so you can use fields other than IP
addresses, such as m_ObjectId (equivalent to sysObjectId). A device must pass all
filters to be discovered.

Important: Design the filter logic so that you do not need to modify the
prediscovery filters every time you add new scopes.

Chapter 1. About discovery 5

You can configure the filter condition to test against any of the columns in the
Details.returns table. But, you might need to use the IP address
(m_UniqueAddress) as the basis for the filter to restrict the detection of a particular
device. If the device does not grant SNMP access to the Details agent, the Details
agent might not be able to retrieve MIB variables such as the Object ID. However,
you are guaranteed the return of at least the IP address when the device is
detected.

You can define multiple prediscovery filters. Filters are combined automatically
using a Boolean AND expression. All criteria defined in all filters must be
matched.

Post-discovery filter

You might want to apply this filter to devices that you do not want to poll, such as
workstations and printers. A post-discovery filter restricts device instantiation. If a
post-discovery filter is defined, only devices that pass the criteria are instantiated,
that is, sent to MODEL. If no post-discovery filter is defined, then all discovered
devices are sent to MODEL.

Data on unclassified devices is held in the NCIM topology database; however, the
device cannot be visualized in Topoviz and cannot be polled.

You can define multiple post-discovery filters. Filters are combined automatically
using a Boolean AND expression, which means that all criteria defined in all filters
must be matched.

The post-discovery filter operates on the scratchTopology.entityByName table.
Hence, the fields available in this filter are different from those available to the
prediscovery filter. The post-discovery filter operates on topology fields rather than
on basic device information.

6 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related concepts:
“Creating the topology” on page 292
The creation of the topology is carried out in several steps.
Related tasks:
“Setting discovery filters” on page 28
Use filters to filter out devices either before discovery or after discovery. You can
filter out devices based on a variety of criteria, including location, technology, and
manufacturer. Filters provide additional restrictions to those defined in the scope
zones.
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.
Related reference:
“Main discovery stitchers” on page 341
This topic lists all discovery stitchers.
Appendix A, “Discovery databases,” on page 183
There are various specialized databases that are used by ncp_disco, the component
that discovers network device existence and connectivity, and by ncp_model, the
component that manages, stores, and distributes the discovered network topology.
“scratchTopology database schema” on page 263
The scratchTopology database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. Its fully qualified database table name is:
scratchTopology.entityByName.

Domain Name System
Configure DNS to enable the discovery to access DNS services that are used to
perform domain name lookups.

You can configure three types of Domain Name System:

DNS server
A server on the network that is dedicated to performing domain name
resolution.

File The name of a file held on the Network Manager host that contains IP
addresses and host names in lookup table format.

System
The local DNS system on the Network Manager machine.

Network address translation
Configure data for NAT gateways in your network.

NAT gateways provide mappings between private IP address in your network and
public device IP addresses. You can enable the system to discover devices within
private address spaces by configuring data for NAT gateways.

Chapter 1. About discovery 7

Advanced settings
Configure advanced discovery settings to increase the speed of the discovery, and
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server. Advanced settings control features of the
discovery such as concurrent processes and timeouts.

Note: Modify the advanced settings only if you are an experienced Network
Manager user.

You can configure the following advanced discovery settings:

Finder parameters:
Finders are discovery subsystems that discover devices on the network.
You can configure parameters such as timeouts, number of retries, and
number of threads for the finders.

Helper parameters
Helpers are discovery applications used by agents to retrieve information
from devices. You can configure parameters such as timeouts, number of
retries, and number of threads for the helpers.

Other parameters
You can configure complex discovery settings, such as enabling caching of
discovery tables, VLAN modeling, discovery failover, File finder
verification, and parameters that affect the speed of partial discovery.

Most of the advanced discovery parameters are optional.

Context-sensitive discovery
If you need to discover devices such as SMS devices, MPLS Edge devices, or other
devices with virtual routers, you must run a context-sensitive discovery.
Context-sensitive discovery ensures correct representation of virtual routers.
Always check that your particular device type is supported for discovery.

In a context-sensitive discovery, information about a device is passed from the
returns table of the Details agent to the despatch table of the relevant Context
agent.

The Context agents use the filters in the .agent files of the agents to determine
which devices to process. This is true for all discovery agents. If the device is not
of a type which supports virtual routers, that is, does not need context-sensitive
processing, it is passed directly to the Associated Address agent.
Related concepts:
“Discovering device details (context-sensitive)” on page 288
The discovery of context-sensitive device details is carried out in several steps.
Related reference:
“Context-sensitive discovery agents” on page 329
There are several agents that take part in a context-sensitive discovery.

8 IBM Tivoli Network Manager IP Edition: Discovery Guide

Helpers
The helpers are specialized applications that retrieve information from the network
on demand. The default helper configuration is sufficient for most networks.
However, you might decide to alter the configuration for several reasons.

Configuring the Helper System can speed up network discovery, but is
recommended for experienced users.

Although the discovery agents retrieve connectivity information, they do not have
any direct interaction with the network. Instead, they retrieve connectivity
information through the Helper System, which consists of a Helper Server and
various helpers.

Reasons to configure the helpers include:
v To speed up the discovery process, you could reduce the helper timeouts and

number of retries.
v If you have a very reliable network in which devices respond quickly, you can

specify a small default timeout.
v You might want to change the default timeouts for the SNMP and Telnet helpers

if you have many devices that either do not respond to SNMP and Telnet or that
are set up not to respond to Telnet or SNMP access. A large default timeout
would therefore mean that the helpers wait for a long time for responses they
never receive.

v To reduce the amount of network traffic caused by a discovery, you could
increase the timeout and disable broadcast and multicast pinging.

Specialized discoveries
You can configure the system to perform more complex discoveries, such as
Multiprotocol Label Switching (MPLS) and Network Address Translation (NAT)
discovery.

Specialized discoveries include:

Element Management System (EMS) discoveries
Collect topology data from Element Management Systems and integrates
this data into the discovered topology.

MPLS discoveries
Discover layer 3 virtual private networks (VPNs) and enhanced layer 2
VPNs running across MPLS core networks.

NAT discoveries
Discover NAT gateway devices to retrieve data on devices in private
address spaces.

Third-party discoveries:
Discover intervening provider networks as a "third-party" object on
multiple networks that run across a provider network (for example,
enterprise VPNs across a provider MPLS core network).

Chapter 1. About discovery 9

10 IBM Tivoli Network Manager IP Edition: Discovery Guide

Chapter 2. Configuring network discovery

Configure how your network is discovered, including which kinds of devices you
want to discover, and where the boundaries of the discovery should be.

Network Manager provides tools for discovering your network using a phased
approach.
v Use the Discovery Configuration Wizard to perform initial discoveries. The

wizard provides a guided discovery and makes configuration choices for you
based on the answers that you provide as you work through the wizard.

v Use the Discovery Configuration GUI to perform subsequent discoveries. Using
the GUI you can configure detailed discovery settings, including scope, seeds,
community strings, agent selection and many other configuration settings.

Note: You can also configure a discovery using the discovery configuration files
and the command line. However, you should configure discovery this way only if
you are an experienced Network Manager user and you understand the different
aspects of discovery, including the discovery processes, phases, stages, Helpers,
agents, stitchers and traps.

For information on how to manually edit a discovered topology following
discovery, see the IBM Tivoli Network Manager IP Edition Network Visualization Setup
Guide.

Planning for discovery
Before configuring and running a discovery, you should check several system
settings, parameters, and requirements.

The following notes help you plan for the discovery.

Saving changes in the Network Discovery Configuration GUI
To save configuration changes that you have made during a session,
remember to click the Save button before you log out, close the browser
window, or close the Network Discovery Configuration tab. It is good
practice to click Save as you move from tab to tab.

Operating system
Ensure that the host on which Network Manager is running is fully
patched with the latest patches.

Discovery scope
Consider the following questions and points related to the discovery scope:
v Is the positioning of the Network Manager host within the network?
v Is the host positioned to interrogate all devices that you want to include

in your discovery?
v Consider all necessary networks, subnetworks and determine the

associated netmasks.
v Are there any parts of the network that you want to exclude?
v Gather all relevant SNMP community strings for the devices within the

scope

© Copyright IBM Corp. 2006, 2013 11

Routing
Ensure that each of the networks and subnetworks to be discovered is
reachable using the ICMP process. If necessary, add routes to Network
Manager host machine using the route add command.

Access control lists
Network Manager uses several protocols that might need to pass through
firewalls. These protocols are ICMP, SNMP, DNS, ARP, SSH, and TELNET.
To ensure that Network Manager can access devices behind these firewalls,
advise the relevant firewall administrators to prepare the firewalls.

Root cause analysis
To perform root cause analysis on devices within a topology, the discovery
must identify all the devices on which you might want to perform root
cause analysis. In addition, the discovery must identify the Network
Manager polling station. For more information on root cause analysis, see
the Network Manager Monitoring and RCA Guide.

Discovering the network using the wizard
The discovery configuration wizard is for users who have limited experience in
configuring discoveries.

Important: If you want to keep discovery configuration settings that you made
previously using the GUI, do not use the wizard. The discovery configuration
wizard overwrites all previous settings.
Related tasks:
“Monitoring network discovery from the GUI” on page 131
From the Active Discovery Status page, you can monitor the status and progress of
the current discovery, investigate the work of the discovery agents, and view
details of the last discovery.

Launching the wizard
Select a domain and launch the wizard to start configuring and running a
discovery.

To launch the wizard, complete these steps.
1. Click Discovery > Network Discovery Configuration.
2. At the top left of the Network Discovery Configuration tab, select the domain

in which you want to run a discovery from the Domain menu.
3. Click the wizard button to the right of the Domain menu.

Choosing a scoped or unscoped discovery
The Discovery Scope window provides the option of a scoped or unscoped
discovery.

To choose a scoped or unscoped discovery, complete these steps.

Restriction: Network Manager does not support the IPv4–mapped IPv6 format
and expects all IPv6 addresses to be in standard colon-separated IPv6 format. For
example, Network Manager does not aupport an IPv4–mapped IPv6 address such
as ::ffff:192.0.2.128. Instead enter this address as ::ffff:c000:280 (standard
colon-separated IPv6 format).
1. Select Scoped or Unscoped.

12 IBM Tivoli Network Manager IP Edition: Discovery Guide

Scoped
A scoped discovery restricts the discovery to a certain part of your
network. To specify a scoped discovery, tell the wizard which area of
the network to restrict the discovery to, and assign IP addresses or
subnets as seeds to ping to begin the discovery.

Unscoped
An unscoped discovery attempts to discover your entire network.
However, you still need to assign IP addresses or subnets as seeds to
ping to begin the discovery.

Attention: If there are routes out of your network to the Internet, an
unscoped discovery will find these routes and start to discover parts of
the Internet.

2. If you selected Scoped, specify which area of the network to which to restrict
the discovery.
Specify one or more subnets to use for both scoping and seeding by clicking
New and typing an IP address and a netmask.

Restriction: For performance reasons, only IPV4 addresses will be pinged. To
ping IPV6 addresses use the Seed tab in the Discovery Configuration GUI.

3. If you selected the Unscoped option, specify the seeds to use for your
unscoped discovery.
Click New... and specify one or more IP addresses.

Configuring SNMP access using the wizard
Specify address-specific, network-specific, or global community strings on the
SNMP Community Strings window.

For SNMP version 3, you can also specify passwords for community strings.

When discovering devices using SNMPv3, the Cisco switches must have the VLAN
context added to the view group for each VLAN.

To configure SNMP access, complete the following steps.
1. For each SNMP community string and associated password that you want to

define:
a. Click the New icon above the SNMP Community Strings table to display

the SNMP Password Properties window.
b. Specify address-specific, subnet-specific, or global SNMP community

strings, and supply passwords for these community strings in the case of
SNMPv3.
You might need to enter a community string more than once. For example,
enter a string for SNMPv1, enter another string for SNMPv2, and another
string for SNMPv3.
Specifying community strings by subnets results in a more efficient and
faster discovery.

Restriction: It is best practice not to use the at symbol (@) in community
strings. Using this symbol in a community string can cause problems
connecting to devices at discovery time.

Chapter 2. Configuring network discovery 13

2. Use the up and down arrow keys to put the community strings in order of
most frequently expected use. Put more frequently used community strings at
the top.

Configuring Telnet access using the wizard
On the Telnet Access window, set the Telnet access parameters.

To configure Telnet access, complete these steps.
1. After you have specified SNMP community strings, click the New icon on the

Telnet Access window.
2. For each set of Telnet-accessible devices for which you want to define prompts

and passwords, click New.
3. On the Telnet Passwords window, specify a set of Telnet-accessible devices (all

devices, all devices within a specified subnet or a single IP address) together
with prompts, login IDs, and login passwords for this set of devices.

Specifying type of discovery
On the Discovery Type window, specify the type of discovery: a Layer 3 or a Layer
2 discovery.

A Layer 3 discovery is quicker, but the results of a Layer 3 discovery cannot be
used for root cause analysis. A Layer 2 discovery is more detailed and the results
can be used for root cause analysis.

To specify discovery type, complete these steps.
1. On the Discovery Type window, specify a Layer 2 or Layer 3 discovery.
2. If you selected Layer 3, the End Node Discovery window is displayed.

On the End Node Discovery window, you can filter out end node devices such
as workstations and printers. You can also filter out devices with no SNMP
access.

Tip: Filtering out all end nodes in networks that have large numbers of end
nodes can lead to speed and performance improvements in your discovery.

3. If you selected Layer 2 and Layer 3, the VLAN Modelling window is
displayed.
In the VLAN Modelling window, you configure the discovery to model VLANs
in the resulting topology. This enables VLANs to be considered when
performing root cause analysis. VLANs are a Layer 2 concept and VLAN
modelling is required for Layer 2 discoveries only. Specify whether you want to
model VLANs. When you have specified an option, click Next to display the
End Node Discovery window.

14 IBM Tivoli Network Manager IP Edition: Discovery Guide

Optimizing the discovery
On the Discovery Optimization window, optimize the discovery for connectivity,
richness of information, and speed.

To optimize the discovery, complete these steps.
1. Provide varying amounts of connectivity information by selecting one of these

options.

Best possible connectivity accuracy and richness of information
This option provides comprehensive connectivity information between
switches, end nodes and routers as well as detailed information on each
device discovered. However, the discovery might require a significant
amount of time to complete.

Best possible connectivity accuracy but prefer speed to richness of
information

This option provides comprehensive connectivity information.
However, the discovery provides less detailed information on each
device discovered in order to provide a faster discovery.

Rich device information but prefer speed to accurate connectivity
This option provides detailed information on each device discovered.
However, the discovery provides less detailed connectivity information
to provide a faster discovery. For example, the discovery might provide
information on how switches are connected to each other, but it might
not provide information on connectivity between switches and end
nodes or between switches and routers.

Note: This option is more suitable if you want to gather inventory data
instead of perform root cause analysis (RCA). RCA is dependent on
accurate connectivity data.

Fastest discovery time
This option focuses on the speed of the discovery. However, limited
connectivity information is provided as well as less detailed
information on each single device.

2. If you select either of the first two options, this means that accurate
connectivity is important. The Network Reliability window is displayed.

3. If you select either of the last two options, this means that you are willing to
compromise on the accuracy of connectivity information to ensure a faster
discovery. In this case, the wizard asks how much of your network is made up
of Cisco devices. If a large proportion of the network is made up of Cisco
devices, then the wizard can switch off agents that discover connectivity for
non-Cisco devices, thereby speeding up the discovery significantly. The Cisco
Hardware window is displayed.
a. Specify how much of your network is made up of Cisco hardware by

selecting one of these options.

All of it
This option directs the wizard to run the Cisco Discovery Protocol
(CDP).

Most of it, Some of it, Don't know
This option directs the wizard to run the CDP. However, if you
chose a Layer 2 and Layer 3 discovery or if you indicated that you
want to exclude end nodes from the discovery, then this option
invokes the Spanning Tree Protocol (STP) as well as CDP.

Chapter 2. Configuring network discovery 15

None of it
This option specifies that neither the CDP nor the STP protocol is
used.

b. When you have selected one of these options, click Next.
c. If your response to the Cisco hardware question was All of it or None of it,

then the Network Reliability window is displayed.
d. If your response to the Cisco hardware question was Most of it, Some of it,

or Don't know, then the Spanning Tree Protocol window is displayed, on
which you specify whether the spanning tree protocol is enabled on all
network switches.

Indicating the reliability of your network
On the Network Reliability window, select a description of the reliability of your
network in responding to pings and SNMP requests. The description directs the
wizard to establish the length of timeouts.

To describe the reliability of your network, choose one of these options that
correspond to the reliability of your network when responding to ping and SNMP
requests.

Very reliable
This description states that the network must be reliable when responding
to ping and SNMP requests. Select this option to allow the wizard to apply
very short timeouts, without any retries. This option is appropriate for a
very reliable network and results in fast discoveries. If you requested
Fastest possible discovery time in the Discovery Optimization window,
then the timeouts set by this option are even shorter.

Quite reliable
This description states that the network must be reliable for the most part
when responding to ping and SNMP requests. Select this option to allow
the wizard to apply slightly longer timeouts, with a single retry for both
SNMP and ping requests.

Not very reliable
This description states that the network does not necessarily need to be
reliable when responding to ping and SNMP requests. Select this option to
allow the wizard to apply longer timeouts and two retries for SNMP
requests and ping requests. Longer timeouts are suitable for less reliable
networks.

Reviewing the configuration
On the Configuration Summary window, review your settings. You can also save
the settings here, and, optionally, start the discovery with the settings that you
configured.

To review your configuration settings, complete these steps.
1. Review the settings on the Configuration Summary window.

Click any of the links to return to the relevant window to modify the settings
as appropriate.

2. When you are satisfied with the discovery settings, select one of these options.
v Select Start Discovery, to use the discovery configuration settings that you

specified, and then click Finish to start the discovery.

16 IBM Tivoli Network Manager IP Edition: Discovery Guide

v If you do not select Start Discovery, the discovery settings are saved when
you click Finish.

Related tasks:
“Monitoring network discovery from the GUI” on page 131
From the Active Discovery Status page, you can monitor the status and progress of
the current discovery, investigate the work of the discovery agents, and view
details of the last discovery.

Discovering the network using the GUI
To perform a custom discovery, complete the tabs on the Network Discovery
Configuration page. On these tabs, you can configure more complex discovery
parameters than by using the Discovery Configuration Wizard.

Remember: To save configuration changes that you have made during a session,
click the Save button before you log out, close the browser window, or close the
Network Discovery Configuration tab. It is good practice to click Save as you
move from tab to tab.

The parameters that you can set on the tabs of the Network Discovery
Configuration are described in the topics that follow.

Most of the parameters that you can set on the Network Discovery Configuration
page are optional.

For the discovery to run, at a minimum you must specify the following
parameters:
v One seed device
v The correct SNMP community strings for the network to be discovered.

If any of the tabs contain data, this data is from earlier configurations. The data is
held in the relevant discovery configuration file.

Scoping discovery
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.

You can define as many zones as necessary. You can add new zones, or edit or
delete existing zones. Zones can be specified within zones: within a given inclusion
zone, you can specify devices or subnets that are not to be detected. These devices
are not pinged by the Ping finder or interrogated by the discovery agents. For
example, you can define an include scope zone consisting of the Class B subnet
1.2.0.0/16, and within that zone you can specify an exclude scope zone consisting
of the Class C subnet 1.2.3.0/24. Finally, within the exclude scope zone you could
specify an include scope zone 1.2.3.128/26.

To scope the discovery:
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click Scope.

3. To add a new scope zone, click New . The Scope Properties page is
displayed.

4. Complete the fields as follows and then click OK.

Chapter 2. Configuring network discovery 17

Scope By:
Select one of the following options:

Subnet
Type the required subnet and specify the number of netmask
bits. The Netmask field is automatically updated.

You can specify a subnet or an individual IP address using
these fields.
v For example, to specify a Class C subnet 10.30.2.0, type

10.30.2.0/24, where 10.30.2.0 is the subnet prefix, and 24 is
the subnet mask.

v To specify an individual device, type an IP address and a
subnet mask of 32. For example, type 10.30.1.20/32.

Wildcard
Use an asterisk (*) as a wildcard.

For example, to specify a scope of all IP addresses that begin
with the 10.30.200. subnet prefix, type 10.30.200.*.

Restriction: Network Manager does not support the IPv4–mapped IPv6
format and expects all IPv6 addresses to be in standard colon-separated
IPv6 format. For example, Network Manager does not support an
IPv4–mapped IPv6 address such as ::ffff:192.0.2.128. Instead enter
this address as ::ffff:c000:280 (standard colon-separated IPv6
format).

Protocol
Select the required Internet protocol: IPv4 or IPv6.

Action
Define the subnet range as an inclusion zone or exclusion zone. If the
subnet range is an inclusion zone that you intend to ping during the
discovery, click Add to Ping Seed List. Clicking this option
automatically adds the devices in the scope zone as a discovery seed
devices.

Restriction: The Add to Ping Seed List option is not available for IPv6
scope zones. This prevents ping sweeping of IPv6 subnets, which can
potentially contain billions of devices to be pinged. Ping sweeping of
IPv6 subnets can therefore result in a non-terminating discovery.

5. To edit an existing scope zone, click the required row. On the Scope Properties
page, edit the properties as described in step 4 on page 17.

6. To delete an existing scope zone, select the Select check box next to the

required row or rows and click Delete .

7. Click Save .

If you are performing NAT address mapping, you must configure the NAT
gateways and return to the Scope tab to set the address mapping.

18 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related concepts:
“Defining discovery zones to restrict discovery” on page 3
To restrict the discovery, you must define discovery zones. You can define
discovery zones in several ways.
“Filters” on page 5
Use prediscovery filters to increase the efficiency of discovery and post-discovery
filters to prevent instantiation of devices.
“Scopes” on page 2
Define the zones of the network (that is, subnet ranges) that you want to include
in the discovery, and the zones that you want to exclude. The areas of the network
to be included in the discovery process, or excluded from the discovery process are
collectively known as the discovery scope.
“Types of scoping” on page 3
Network Manager offers several types of scoping.
Related tasks:
“Troubleshooting missing devices” on page 167
If a device that you expect to find in your network topology is not present, follow
these steps to troubleshoot the problem.
“Configuring a multicast discovery” on page 34
Configure a multicast discovery by enabling the required agents and scoping the
discovery.
Related reference:
“Main discovery stitchers” on page 341
This topic lists all discovery stitchers.
Appendix A, “Discovery databases,” on page 183
There are various specialized databases that are used by ncp_disco, the component
that discovers network device existence and connectivity, and by ncp_model, the
component that manages, stores, and distributes the discovered network topology.
“scratchTopology database schema” on page 263
The scratchTopology database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. Its fully qualified database table name is:
scratchTopology.entityByName.
“DiscoScope.cfg configuration file” on page 64
The DiscoScope.cfg configuration file can be used to configure the scope of a
discovery.
“Quick reference for NAT discovery configuration” on page 118
Use this information as a step-by-step guide to configuring a NAT discovery..

Defining multiple inclusion zones
You can define multiple inclusion zones in the scope.zones table.

In the following example, three different IP inclusion zones are defined within a
single insert.
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values
(

1,
1,
[

Chapter 2. Configuring network discovery 19

{
m_Subnet="172.16.1.0",
m_NetMask=24

},
{

m_Subnet="172.16.2.*"
},
{

m_Subnet="172.16.3.0",
m_NetMask=255.255.255.0

}
]

);

The above example defines three different IP inclusion zones each using a different
syntax to define the subnet mask. Network Manager discovers:
v Any device that falls within the 172.16.1.0 subnet (with a subnet mask of 24, that

is, 24 bits turned on and 8 bits turned off, which implies a netmask of
255.255.255.0).

v Any device with an IP address starting with "172.16.2", that is, in the 172.16.2.0
subnet with a mask of 255.255.255.0.

v Any device that falls within the 172.16.3.0 subnet with a mask of 255.255.255.0.
Related concepts:
“Defining discovery zones to restrict discovery” on page 3
To restrict the discovery, you must define discovery zones. You can define
discovery zones in several ways.

Seeding discovery
To seed the discovery, provide the starting points from which to look for devices.

For the discovery to run, at a minimum you must specify the following
parameters:
v One seed device
v The correct SNMP community strings for the network to be discovered.

Use the following methods to seed the discovery:

Ping finder
Seed the Ping finder with a device or subnet address at which the finder
begins looking for devices. You can specify seeds for the Ping finder and
save these seeds. You can separately decide whether to activate the Ping
finder for the discovery.

File finder
Seed the File finder with a text file on the Network Manager host to which
you have read access. This file must be a structured text file that contains
the seeds in the form of IP addresses and device names in columns. You
usually use a file that already exists on the Network Manager host.
However, if you want to create a new file to hold the seeds, you need to
have write permissions for the directory where you want to write the file.

There is also a mechanism to trigger a partial discovery based on receipt of a trap.
This is performed by the Disco plug-in to the Event Gateway. For more
information on the Disco plug-in, see the IBM Tivoli Network Manager IP Edition
Event Management Guide.

When running an IPv6 discovery, ensure that the following conditions are met:

20 IBM Tivoli Network Manager IP Edition: Discovery Guide

v There is at least one IPv6 seed device within each IPv6 scope.
v If you specify an IPv6 subnet as a seed, then ensure that the subnet is small by

specifying a high value for the netmask.

By default, the Ping finder and File finder are switched on.

To seed the discovery:
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click Seed.
3. Optional: To switch off the Ping finder or File finder clear the Use Ping

Finder in Discovery or Use File Finder in Discovery check boxes.
4. Add or edit a ping seed:

v To add a new ping seed, click New .
v To edit an existing ping seed, click the required entry in the list.

The Ping Seed Properties page is displayed.
5. Complete the fields as follows and click OK.

Seed by:
Select one of the following options:

IP Type an IP address.

Subnet
Specify a subnet and type the number of netmask bits. The
Netmask field is automatically updated.

Restriction: Network Manager does not support the IPv4–mapped
IPv6 format and expects all IPv6 addresses to be in standard
colon-separated IPv6 format. For example, Network Manager does not
support an IPv4–mapped IPv6 address such as ::ffff:192.0.2.128.
Instead enter this address as ::ffff:c000:280 (standard
colon-separated IPv6 format).

Timeout
Specify the time in milliseconds to wait for a reply from a pinged
address before timing out.

Retries
Specify the number of times a device is to be repinged.

6. To delete an existing ping seed, select the Select check box next to the

required row and click Delete .
7. Add or edit a file seed:

v To add a new file seed to the File finder, click New .
v To edit an existing file seed, click the required entry in the list.

The File Seed Properties page is displayed.
8. Complete the fields as follows and click OK.

Filename
Specify the path to the file on the host workstation that contains the
seed data.

Chapter 2. Configuring network discovery 21

Delimiter
Specify the column delimiter. Use a regular expression if required. For
example, if the Name and IP columns are separated by one or more
tabs, then insert [tab_space]+, where tab_space is an actual tab
character. To produce this tab character, create a tab in a text editor,
copy the tab and paste it into the field.

Name Column
Type the column number of the column that contains the device
names of the seed devices.

IP Column
Type the column number of the column that contains the IP addresses
of the seed devices.

9. To delete an existing file seed, select the Select check box next to the required

row and click Delete .

10. Click Save .

You can also seed a discovery by using the Collector finder. The collector finder
retrieves topology data from an EMS. Topology data is collected by EMS collectors,
which are software modules that retrieve topology data held in an EMS database,
convert this data to XML format and pass this data to Network Manager IP Edition
to stitch into the topology. You must seed the Collector finder to enable Network
Manager IP Edition to find one or more EMS collectors.
Related reference:
“DiscoPingFinderSeeds.cfg configuration file” on page 61
The DiscoPingFinderSeeds.cfg configuration file is used for seeding the Ping finder
and restricting device detection.
“DiscoCollectorFinderSeeds.cfg configuration file” on page 56
The DiscoCollectorFinderSeeds.cfg configuration file defines how topology data
is acquired from Element Management System (EMS) collectors during discovery.
“Advanced discovery parameters” on page 37
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.

IPv6 subnet mask sizes
There are potentially billions of devices to be pinged within a single IPv6 subnet.
To ensure that discovery completes, you must specify a sufficiently large netmask
if you specify an IPv6 subnet as a ping seed.

The following table provides examples of IPv6 subnet mask sizes configured
within ping seeds and the corresponding estimated time required to ping the
devices in the subnet. The estimated times are based on spacing the pings by 100
ms between pings. This table shows that it is best to limit the size of IPv6 subnet
masks in your subnet seeds.

Table 1. Ping response times for IPv6 subnet masks

IPv6 subnet mask size
Number of IPv6 addresses
in subnet

Estimated ping time for
subnet

120 256 26 seconds

112 65536 1 hour 48 minutes

22 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 1. Ping response times for IPv6 subnet masks (continued)

IPv6 subnet mask size
Number of IPv6 addresses
in subnet

Estimated ping time for
subnet

100 268 million Approximately 8.5 years

The time estimates shown in the table refer to time taken to ping all the seeds in a
subnet seed specified for the Ping finder. It would take longer to complete the
discovery as there will be many more devices to ping within the discovery scope.

Configuring device access
Specify SNMP community strings and Telnet access information to enable helpers
and Network Manager polling to access devices on your network.

Note the following information about the SNMP helper and Telnet helper:

SNMP helper
You must specify SNMP community strings for the SNMP helper and
polling operations to access devices on your network. You might need to
enter a community string more than once. For example, once for SNMPv1,
once for SNMPv2, and once for SNMPv3.

Telnet helper
Enter the relevant device prompts, login ID, and password for the Telnet
helper and the discovery agents that use Telnet. You can configure
Telnet-privileged access properties. The privileged access mode allows
commands to be run that might change the configuration of the device. By
default, when the discovery accesses the device using Telnet, access is
granted in user mode. This mode allows the running of basic commands
only, such as those commands that show the status of the system. This
default access mode is a safety feature to prevent the discovery making
any device configuration modifications without an explicit change to
privileged mode.

Community strings and Telnet access data can be global, which means that the
discovery tries the community string for every device it encounters, or restricted to
specific subnets (that is, used only on devices within a specific subnet), or even
restricted to specific devices. Specifying community strings and Telnet access data
by subnet results in a more efficient and faster discovery. In general, the more
specific the credentials, the faster the discovery will determine the correct
credentials.

Note: Speed of discovery related to community string settings in the GUI only
affects the initial discoveries. Once Network Manager has identified the correct
community strings, it stores this information in the NCMONITOR relational
database. Subsequent discoveries access this database for SNMP cmmunity strings
and other SNMP-related device access information.

For the discovery to run, at a minimum you must specify the following
parameters:
v One seed device
v The correct SNMP community strings for the network to be discovered.

Chapter 2. Configuring network discovery 23

You can also configure the SNMP Helper to use the GetBulk operation when
SNMP v2 or v3 is used. Use of the GetBulk operation improves discovery speed.
For more information, see the IBM Tivoli Network Manager IP Edition Installation and
Configuration Guide.

When discovering devices using SNMPv3, the Cisco switches must have the VLAN
context added to the view group for each VLAN.

To configure device access:
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click Passwords.

3. To add a new SNMP community string, click New . The SNMP Password
Properties page is displayed.

4. Complete the fields as follows and then click OK:

Community String
Type a name. When you save the community string, the name is
encrypted, but on the GUI, the value is always displayed
unencrypted. For speed of discovery, order the SNMP strings by
frequency, with the most common strings first.

Restriction: It is best practice not to use the at symbol (@) in
community strings. Using this symbol in a community string can
cause problems connecting to devices at discovery time.

Apply to
The discovery completes more quickly if you specify the correct scope
of the community strings. Select one of the following options:

All Devices
Select this option if the community string is global.

IP Address
Select this option if the community string is specific to an IP
address, and type the IP address.

Subnet
Select this option if the community string is specific to a
subnet. Type the required subnet and specify the number of
netmask bits. The Netmask field is automatically updated.

SNMP Version
Specify the version of SNMP for this SNMP community. If you specify
SNMP V3, complete the following additional fields:

Security Name
Type a name.

Level Specify the required level of authentication and privacy.

NoAuthNoPriv,
Select this option for SNMP communities that have no
authentication or private key. In this case there is no
need to specify any passwords.

AuthNoPriv
Select this option for SNMP communities that have an

24 IBM Tivoli Network Manager IP Edition: Discovery Guide

authentication key but no private key. Then specify a
password in the Auth Password field.

AuthPriv
Select this option for SNMP communities that have
both an authentication and a private key. Then specify
passwords in the Auth Password and Private
Password fields.

Auth Type
Specify the type of encryption for the authentication
password.

Restriction: The MD5 encryption option is not available if
you are running a FIPS 140–2 installation of Network
Manager.

Priv Type
Specify the type of encryption for the privacy password.

Restriction: The DES encryption option is not available if you
are running a FIPS 140–2 installation of Network Manager.

SNMP Port
Specify the required port.

Timeout
Specify the time in milliseconds to wait for a reply before timing out.

Retries
Specify how many times you want the SNMP helper and polling
operations to attempt to access a device.

5. Click Move Up and Move Down to arrange the SNMP
community strings. Put the most frequently used strings at the top of the list.

6. Click Save.

7. To add Telnet access information, click New. The Telnet Password
Properties page is displayed.

8. Complete the fields as follows:

Apply to
Select one of the following options:

All devices
Select this option if the data applies globally.

IP address
Select this option if the string is specific to a device, and type
the IP address of the device.

Subnet
Select this option if the string is specific to a subnet. Type the
required subnet and specify the number of netmask bits. The
Netmask field is automatically updated.

Username prompt
Type the prompt that you want to be displayed at login. If you do not
know the exact format of the prompt. use a regular expression.

Username
Type the user name.

Chapter 2. Configuring network discovery 25

Password prompt
Type the prompt that you want to be displayed when the password is
required at login. If you do not know the exact format of the prompt,
use a regular expression.

Password
Type the password.

Console prompt
Type the prompt that is displayed when you log in. If you do not
know the exact format of the prompt, use a regular expression.

Access port
Specify the port on which the Telnet helper and discovery agents
attempt to access devices.

Timeout
Specify the time in milliseconds to wait for a reply before timing out.

Use SSH
Select this option to configure the Telnet Helper to use the Secure
Shell (SSH) program.

9. Optional: To configure Telnet-privileged access mode properties:
a. Click Advanced. The Telnet Privileged Access Mode Properties page is

displayed.
b. Complete the fields as follows and then click OK:

Command
Type the command required to enter Telnet-privileged access
mode. This command is typically enable.

Password Prompt
Type the prompt that you want to be displayed when the
password is required at login. If you do not know the exact format
of the prompt, use a regular expression.

Password
Type the required password for privileged mode.

Console Prompt
Type the prompt that is displayed when you log in. If you do not
know the exact format of the prompt, use a regular expression.

Commands requiring mode:
Specify the commands that you want to make accessible from
privileged mode. To add new commands, click New... and type the
command in the Priv command field. The following commands
are required to run in enable mode:
v show run

v show mac-address-table

v show ip nat translation

10. Click OK. Click Save .

When you save the Telnet password settings, the following passwords are
automatically encrypted:
v Telnet password
v Telnet privileged mode password (if specified)

26 IBM Tivoli Network Manager IP Edition: Discovery Guide

When you save the password settings, the following passwords are automatically
encrypted:
v SNMP community string
v SNMP authentication password
v SNMP private password

If required, change the SNMP and Telnet encryption settings. For example, you can
change the encryption key file, or switch off encryption.
Related tasks:
“Enabling the StandardMPLSTE agent” on page 112
To discover MPLS TE tunnels, you must enable the StandardMPLSTE agent and
add the relevant SNMP community strings.
Related reference:
“Advanced discovery parameters” on page 37
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.
“Connectivity at the layer 3 network layer” on page 316
There are a number of discovery agents that retrieve connectivity information from
OSI model layer 3 (the Network Layer). Layer 3 is responsible for routing,
congestion control, and sending messages between networks.

Activating agents
You must enable the appropriate agents for the discovery you want to perform.
You can specify agents for a full discovery or for a partial discovery.

You can speed up the time taken for a partial discovery by selecting only those
agents essential to discover the new or modified devices. You might want to run a
partial discovery if you know that new devices have been added to the network or
that engineers have been working on a device and have added or removed
components of this device.

Note: The more agents you run, the more data is retrieved from the network, and
the slower the discovery.

To activate agents:
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click one of the following tabs, based on your requirements:

Tab Description

Full Discovery Agents Select agents from this tab to run a full
discovery.

Partial Discovery Agents Select agents from this tab to run a partial
discovery.
Note: The Reset button in the Partial
Discovery Agents window sets the partial
agents to match the settings defined in the
Full Discovery Agents window.

The Agents List is displayed, showing all available discovery agents for the
selected discovery option.

Chapter 2. Configuring network discovery 27

3. Select the check boxes next to the required agents. For descriptions of the
agents, select an agent name.
To select all agents required for a layer 3 discovery, select the Layer 3 checkbox.
To select all agents required for a layers 2 and 3 discovery, select the Full Layer
2 and Layer 3 Discovery checkbox.

4. Click Save . If you have selected a invalid combination of agents, or a
combination that might result in an inefficient discovery, a warning is
displayed.

5. If applicable, follow the steps displayed in the warning:
v If you selected an agent that must be run in conjunction with another agent

or agents, the warning indicates that the additional agents will be selected as
applicable. Click OK to select the agents, or click Cancel.

v If you selected an agent that cannot be run in conjunction with another agent
or agents, the warning indicates that the redundant agents will be
automatically deselected. Click OK to deselect the recommended agent or
click Cancel.

Related tasks:
“Enabling collector discovery agents” on page 101
By default, the collector discovery agents are not enabled. You must enable these
agents if you are running a discovery that includes collector-based discovery.
“Configuring MPLS agents” on page 105
As part of MPLS discovery configuration you must enable one or more MPLS
agents. You can also resolve the problem of duplicate IP addresses in different
Virtual Private Networks (VPNs) by configuring the AsAgent agent.
Related reference:
Appendix C, “Discovery agents,” on page 303
Use this information to support the selection of discovery agents to run as part of
your discovery.

Setting discovery filters
Use filters to filter out devices either before discovery or after discovery. You can
filter out devices based on a variety of criteria, including location, technology, and
manufacturer. Filters provide additional restrictions to those defined in the scope
zones.

A filter is made up of one or more filter conditions. Filter conditions are defined in
Object Query Language (OQL). You can add the following types of filter:

Prediscovery filters
Prediscovery filters prevent discovered devices from being polled for
connectivity information.

Post discovery filters
Post-discovery filters prevent discovered devices from being passed to
MODEL.

Note: To ensure that alerts are not raised for interfaces that are excluded
by the post discovery filter, you must set the
RaiseAlertsForUnknownInterfaces variable. To this, perform the following
steps:
1. Edit the $NCHOME/etc/precision/NcPollerSchema.cfg configuration file.
2. Add the following line to the file:

28 IBM Tivoli Network Manager IP Edition: Discovery Guide

update config.properties set RaiseAlertsForUnknownInterfaces = 1;

The steps for adding, editing, and deleting filters are identical for both types.

To set the discovery filters:
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click Filters.
3. To use a filter in the discovery, select a filter from the Available filters list and

click Add. The filter is added to the Selected Prediscovery Filter field or the
Selected Postdiscovery Filter field, depending on the type of filter.

4. To delete a filter, select a filter from the Available filters list and click Delete.
5. To add a new filter, or edit an existing filter, click Filter Library. The Filter

Library page is displayed.
6. Add or edit the filter as follows:

Action Instructions

Add a new filter Click Add and type the required name in
the Name field.

Edit an existing filter Select the required filter from the list.

7. On the Basic tab, build the filter conditions as follows:
a. Select the required field and comparator.
b. Type the value for comparison with the selected field. See “Sample filter”

for an example.

c. Click Add New Row or Delete This Row to add or remove rows.
d. Select All to combine multiple conditions in an AND relationship, or Any

combine the conditions in an OR relationship.
e. Click Save.

8. Optional: On the Advanced tab, type the required SQL WHERE clauses. For
multiple conditions, use an AND or an OR relationship as appropriate. Click
Save.

Note: The filter is actually based on standard OQL formatting, though the GUI
refers to the SQL clause.

9. Click Close to close the Filter Library, then click Save to save your filter
settings.

Sample filter

The following example shows a filter condition for a prediscovery filter:
m_ObjectId not like 1\.3\.6\.1\.4\.1\.2\.3\.1\.

For more information on OQL syntax, see the IBM Tivoli Network Manager IP
Edition Language Reference.

Chapter 2. Configuring network discovery 29

Related concepts:
“Filters” on page 5
Use prediscovery filters to increase the efficiency of discovery and post-discovery
filters to prevent instantiation of devices.
Related tasks:
“Troubleshooting missing devices” on page 167
If a device that you expect to find in your network topology is not present, follow
these steps to troubleshoot the problem.
Related reference:
“Main discovery stitchers” on page 341
This topic lists all discovery stitchers.
Appendix A, “Discovery databases,” on page 183
There are various specialized databases that are used by ncp_disco, the component
that discovers network device existence and connectivity, and by ncp_model, the
component that manages, stores, and distributes the discovered network topology.
“scratchTopology database schema” on page 263
The scratchTopology database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. Its fully qualified database table name is:
scratchTopology.entityByName.

Available filter values
Use this reference information to familiarize yourself with the permissible values
when you set discovery filters on the Network Discovery Configuration page.

Prediscovery filter values

When constructing a prediscovery filter, you can filter based on any of the fields in
the Details.returns table. These fields are as follows:

m_Name

m_UniqueAddress

m_Protocol

m_ObjectId

m_Description

m_HaveAccess

m_UpdAgent

m_AddressSpace

In addition, by using the Advanced tab, you can construct filter rows using any of
the fields from within the m_ExtraInfo field.

Postdiscovery filter values

When constructing a post-discovery filter, you can filter based on any of the fields
in the scratchTopology.entityByName table. These fields are as follows:

EntityName
The unique name of a network entity.

Address
A list that contains an address for the object for layers 1-7 of the OSI model.

30 IBM Tivoli Network Manager IP Edition: Discovery Guide

Description
The sysDescr or other description.

EntityType
The type of the entity.

EntityOID
The class of the device.

Status
The status of the entity.

IsActive
Whether the entity is active.

Contains
The entities or other containers that are contained by this entity.

UpwardConnections
The entities that this entity is physically a part of.

RelatedTo
The devices an entity is connected to.

ExtraInfo
Miscellaneous extra information.

In addition, by using the Advanced tab, you can construct filter rows using any of
the fields from within the ExtraInfo field.

Configuring Domain Name System
You can specify the methods that the Domain Name System (DNS) Helpers use to
perform domain name lookups.

Helpers are specialized applications that retrieve information from and about
network devices for the discovery agents.

Each of method that you specify uses one of the following three domain methods:

DNS Server
A server on the network that is dedicated to performing domain name
resolution.

File The name of a file held on the Network Manager host that contains IP
addresses and host names in lookup table format.

System
The local DNS system on the Network Manager host.

Tip: You can define as many methods as is necessary. You can change the order in
which these methods are retrieved by the DNS Helper so that the most commonly
accessed method is retrieved first. This enables a more effective use of resources
during the discovery.

To configure DNSs:
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click the DNS tab.
3. Add a new DNS helper, or edit an existing helper as follows:

Chapter 2. Configuring network discovery 31

v To add a new DNS helper, click New .
v To edit an existing helper, click the name of the required helper.

The DNS Service Properties page is displayed.
4. Complete the fields as follows and then click OK.

Service Name
Type the name of the method.

Type Select one of the following options:

DNS Server
Type the IP address of the required DNS server. In the Timeout
field, specify the number of seconds to wait for a response from
the DNS Server before timing out.

File Type the name of the file that contains the domain lookup
information. Specify the order in which this information
appears in the lookup table by selecting one of the radio
buttons:
v Name then IP

v IP then Name

System
Choose this option to use the local DNS system on the Network
Manager server.

Domain Suffix
Specify the suffix to append to each device name after the name is
looked up. The specified domain suffix is only added if no domain
suffix is present in the device name.

Note: If you expect the discovery to return some or all devices names
with domain suffixes already appended, then you can specify a list of
expected domain suffixes. The domain suffix value specified in the
Domain Suffix field is not appended to any device names returned by
the discovery with these expected suffixes. To specify a list of expected
domain suffixes, you must configure the DiscoDNSHelperSchema.cfg
configuration file from the command line.

5. Repeat steps 3 on page 31 to 4 to add or edit the required methods.

6. In the Move column, click Move Up and Move Down to arrange
the methods in the order of most frequently-expected use, with the most
frequently-used methods at the top.

7. Click Save .
Related reference:
“Advanced discovery parameters” on page 37
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.
“DiscoDNSHelperSchema.cfg configuration file” on page 56
The DiscoDNSHelperSchema.cfg configuration file defines access to DNS, which
enables the discovery to do domain name lookups, by configuring the DNS helper.

32 IBM Tivoli Network Manager IP Edition: Discovery Guide

Configuring NAT translation
To configure NAT translation to discover NAT environments, map the
address-space identifier for a NAT domain to the IP address of the associated NAT
gateway device.

After activating NAT, you must map the discovery scope zones to the NAT
address spaces. You do this on the Scope tab.

To configure NAT gateways:
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click NAT.
3. Add a new NAT gateway, or edit an existing gateway:

v To add a new NAT gateway, click New .
v To edit an existing NAT gateway, click the IP address in the required row.

The NAT Gateway page is displayed.
4. Complete the fields as follows and click OK:

IP Address
Type the public IP address of the NAT gateway device.

Address Space
Type the address space identifier that you want to use for the
associated NAT domain.

5. Click Save .
6. To activate NAT translation for the discovery, select Enable Network Address

Translation (NAT) Support. Click Save and then map the discovery scope
zones to the NAT address spaces:
a. Click Scope.
b. Click a scope zone to edit it. The Scope Properties page is displayed.
c. In the Address Space field, enter the NAT address space and click OK. The

Address Space field appears on the Scope Properties only after the Enable
Network Address Translation (NAT) Support has been selected.

d. Repeat the previous two steps for all the required scope zones.

e. Click Save .

NAT Address Spaces Dynamic Distinct view is created automatically if Enable
Network Address Translation (NAT) Support is turned on. Once discovery is
complete, use the Network Views to visualize the NAT Address Spaces
network view.

Chapter 2. Configuring network discovery 33

Related tasks:
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.
“Configuring NAT discoveries” on page 115
Configure a Network Address Translation (NAT) discovery to discover NAT
environments, by mapping the address-space identifier for a NAT domain to the IP
address of the associated NAT gateway device.
Related reference:
“Quick reference for NAT discovery configuration” on page 118
Use this information as a step-by-step guide to configuring a NAT discovery..

Configuring a multicast discovery
Configure a multicast discovery by enabling the required agents and scoping the
discovery.
Related concepts:
“Types of scoping” on page 3
Network Manager offers several types of scoping.
Related tasks:
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.
Related reference:
“scope.multicastSource table” on page 205
The scope.multicastSource table defines which IPM routes to discover. This is
particularly useful if you have multiple IPM route sources, since you can scope
multicast discovery by IPM route source to focus on the sources of interest.
“scope.multicastGroup table” on page 204
The scope.multicastGroup table defines which multicast groups to discover and
which details to retrieve from these groups.

Enabling the multicast agents
To discover multicast groups, you must enable the appropriate agents and add the
relevant SNMP community strings.

To enable the agents, complete the following steps.
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click the Full Discovery Agents tab. The Agents List is displayed, showing all

available discovery agents for the selected discovery option.
3. Click Full Layer 2 and Layer 3 Discovery > Multicast.
4. Select the check box next to the agents you want to enable.

a. Enable the StandardPIM agent to discover protocol-independent multicast
groups compliant with the RFC2934 PIM MIB.

b. Enable the StandardIPMRoute agent to discover IP multicasting networks
compliant with the RFC2932 IPMRoute MIB.

c. Enable the StandardIGMP agent to discover multicast groups running the
Internet Group Membership Protocol (IGMP).

5. Click Save .

34 IBM Tivoli Network Manager IP Edition: Discovery Guide

6. Optional: If you want to rediscover multicast groups, also enable the
appropriate agents for partial discoveries.

7. Ensure that the SNMP community strings are configured correctly to access the
devices in the multicast groups.

Related reference:
“Multicast agents” on page 323
Multicast agents retrieve data from devices participating in multicast groups and
routes.

Scoping a multicast discovery
Configure which multicast groups and sources to discover using the Multicast tab.

To configure a multicast discovery, complete the following steps.
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click Multicast.
3. In the Multicast Groups section, create a new multicast group or edit an

existing group:

v To create a new group to discover, click New .
v To edit an existing group, click the group name.

The Multicast Group Properties page is displayed.
4. Define the scope properties using the following fields:

Group Name
Specify a name for this multicast group.

PIM Mode
Select whether to include or exclude Protocol Independent Multicast
(PIM) data from the discovery. By default, PIM data is included.

IPM Route Mode
Select whether to include or exclude Internet Protocol Multicast (IPM)
group data from the discovery. By default, IPM Group data is
included.

IGMP Mode
Select whether to include or exclude Internet Group Management
Protocol (IGMP) data from the discovery. By default, IGMP data is
included.

Protocol
Only IPv4 is supported.

Specify which Group subnets to add to Multicast Groups
Use the following fields and buttons to add and delete group subnets:

Subnet
Enter a subnet and netmask for a group subnet to add to the
multicast groups.

Add Click Add the add this group.

Delete Select a group subnet from the adjacent list and click Delete
to delete the selected group.

Note: Reserved multicast addresses are excluded from the scope by default.
5. Click OK.

Chapter 2. Configuring network discovery 35

6. To delete one or more groups, select the groups you want to delete and click

the Delete button . To select or deselect all groups, click the Select All

or Deselect All button.
7. In the Multicast Sources section, create a new multicast source or edit an

existing source.

v To create a new source to discover, click New .
v To edit an existing source, click the source name.

The Multicast Source Properties page is displayed.
8. Define the source properties using the following fields:

IPM Route Mode
Select whether to include or exclude the group:
v Unknown - use default

v Include source

v Exclude source

Protocol
Only IPv4 is supported.

Specify which Group subnets to add to Multicast Sources
Use the following fields and buttons to add and delete group subnets:

Subnet
Enter a subnet and netmask for a group subnet to add to the
multicast sources.

Add Click Add the add this group.

Delete Select a group subnet from the adjacent list and click Delete
to delete the selected group.

Specify which Source subnets to add to Multicast Sources
Use the following fields and buttons to add and delete group subnets:

Subnet
Enter a subnet and netmask for a sources subnet to add to the
multicast sources.

Add Click Add the add this group.

Delete Select a source subnet from the adjacent list and click Delete
to delete the selected soource.

9. Click OK.
10. To delete one or more groups, select the groups you want to delete and click

the Delete button . To select or deselect all groups, click the Select All

or Deselect All button.

11. Click Save .

36 IBM Tivoli Network Manager IP Edition: Discovery Guide

Advanced discovery parameters
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.

Set the advanced parameters on the Advanced tab of the Network Discovery

Configuration page. After you have set the advanced parameters, click Save .

Attention: Modify the advanced settings only if you are an experienced Network
Manager user. If you modify the advanced parameters and the discovery does not
work as expected, click Reset to restore the default settings.

“Advanced Finder Configuration”
“Advanced Ping Finder Configuration”
“Advanced Discovery Configuration” on page 39
“Advanced Telnet Helper Configuration” on page 38
“Advanced SNMP Helper Configuration” on page 38
“Advanced DNS Helper Configuration” on page 39
“Advanced Discovery Configuration” on page 39

Advanced Finder Configuration

To set advanced parameters for the File finder, use the following field:

Concurrent File Finders
Specify the number of threads to be used by the File finder. Each thread
can process a different seed file simultaneously. If you have many seed
files and spare resources on the discovery server, more threads might result
in a faster discovery. If you have only one seed file, increasing the number
of threads has no effect.

Advanced Ping Finder Configuration

To set the advanced parameters for the Ping finder, use the following fields:

Concurrent Ping Finders
Specify the number of threads to be used by the Ping finder. Each thread
processes one pingFinder.pingRules insert at a time. Increasing the number
of threads does not speed up a single large ping sweep but might speed
up feedback of many addresses. However, you must balance speed against
the resources of your machine and the ability of the ping receiver to
process the ping responses in a timely manner. If the number of threads is
too high, the ping receiver will fall behind, resulting in false ping failures
and a loss of device discovery.

Studies have shown that the default number of 10 threads is optimal for
most situations. You can gradually increase the number of threads and
monitor the number of ping failures and make a note of time savings.
Depending on the resources available, at a certain point the benefits start
to decrease as resources are overloaded.

Default Timeout
Specify the maximum time, in milliseconds, to wait for a reply from a
pinged address. If you know that network latency is low, a reduced wait

Chapter 2. Configuring network discovery 37

time might result in a faster discovery. A value that is too low for your
network might result in devices not being discovered.

Default Number of Retries
Specify the number of times a device is to be pinged again following a
failed initial ping.

Inter-Ping Time
Specify the interval in milliseconds between ping attempts made against
the devices contained in a list or subnet. If network traffic resulting from
the discovery is not an issue, this value can be reduced.

Allow Broadcast Pinging
To enable broadcast address pinging, select this check box.

Allow Multicast Pinging
To enable multicast address pinging, select this check box.

Advanced Telnet Helper Configuration

To set advanced parameters for the Telnet helper, use the following fields:

Concurrent Telnet Helpers
Specify the number of threads to be used by the Telnet helper. If you have
many devices from which you want to access data using Telnet or SSH
then increasing this value might result in a faster discovery. Typical
examples of such devices are Catalyst switches, MPLS devices, and NAT
gateways. If you change this value, be sure that your system is configured
to allow at least this number of concurrent Telnet sessions.

Default Timeout
Specify the maximum time, in milliseconds, to wait for access to a device.

Number of Retries
Specify the number of times to try to connect to the device following a
failed initial connection attempt.

Tip: You can also configure some other advanced settings in the
DiscoTelnetHelperSchema.cfg file.

Advanced SNMP Helper Configuration

To advanced parameters for the SNMP helper, use the following fields:

Concurrent SNMP Helpers
Specify the number of threads to be used by the helper. If you have many
devices with SNMP access and spare resources on the discovery server,
more threads might result in a faster discovery. If you change this value,
make sure that your system is configured to allow at least this number of
concurrent SNMP sessions. This value must be more than the number of
threads used by the Details discovery agent.

Timeout
Specify the maximum time, milliseconds, to wait for access to a device.

Number of Retries
Specify the number of attempts to retrieve one or more SNMP variables
from a device after a failed initial attempt.

GetNext Slowdown
Specify the delay, in milliseconds, between each SNMP GetNext request.

38 IBM Tivoli Network Manager IP Edition: Discovery Guide

The m_GetNextSlowDown parameter is applied when the number of separate
GetNext requests issued in order to retrieve a non-scalar SNMP variable
exceeds the value of the m_GetNextBoundary parameter.

GetNext Boundary
Specify the minimum number of GetNext requests to be issued when a
non-scalar SNMP variable is retrieved from a device. The
m_GetNextBoundary parameter is applied before the delay specified by the
m_GetNextSlowDown parameter is introduced.

Advanced DNS Helper Configuration

To set advanced parameters for the DNS helper, use the following fields:

Concurrent DNS Helpers
Specify the number of threads to be used by the helper. If you change this
value, be sure that your system is configured to allow at least this number
of concurrent DNS sessions.

Default Timeout
Specify the maximum time, in milliseconds, to wait for a response from a
device.

Advanced Discovery Configuration

To specify advanced feedback control, ping verification, and further advanced
discovery parameters, use the following fields:

Enable Feedback Control
Specify whether to enable feedback control. Feedback means that the data
returned by agents is used by the discovery to find other devices.
Examples of feedback data include the IP addresses of remote neighbors,
and addresses in the subnet within which a local neighbor exists.

No Feedback
Feedback is switched off for all discoveries and rediscoveries. Only
the devices specified to the finders are discovered. This option
means that discoveries and rediscoveries complete in the quickest
possible time. However, the resulting network topology is
incomplete unless you specify all devices that you want to discover
as seeds.

Tip: Switch feedback off if you want to discover only a list of
certain devices. Specify the devices you want to discover as seeds.

Feedback
Feedback is switched on for full discoveries, full rediscoveries, and
partial rediscoveries. This option provides a complete topology in
all situations but takes the longest.

Feedback Only on Full
This setting is on by default. Feedback is switched on for full
discoveries and full rediscoveries, but switched off for partial
rediscoveries.

Enabling Ping Verification
Specify whether the discovery checks for pingable interfaces. If a device is
not pingable, the device is not polled for alerts.

Chapter 2. Configuring network discovery 39

Don't Check Pingability
None of the discovered interfaces are checked for whether they can
be pinged. Interfaces are polled regardless of whether they are
pingable at discovery.

Check Pingability
After discovery, every discovered interface is checked for whether
they can be pinged. The check is run against the details.returns
table. Interfaces that have an entry in this table are pingable.
Interfaces that do not have an entry in this table are not pingable.
The pingable interfaces are marked to be polled.

Detect Best Setting
This setting is on by default. If feedback control has been enabled,
after discovery, every discovered interface is checked for whether
they can be pinged. The check is run against the details.returns
table. Interfaces that have an entry in this table are pingable.
Interfaces that do not have an entry in this table are not pingable.
The pingable interfaces are marked to be polled.

Restriction: This option works only when you select one of the
following options from the Enable Feedback Control list: Feedback
or Feedback only on Full.

Enable 'Allow Virtual'
Specify how you want the discovery to handle virtual IP addresses: 1.

Don't Allow Virtual
Does not discover virtual IP addresses.

Allow Virtual
Discovers virtual IP addresses. This setting is on by default.

Allow if in scope.special
Discovers virtual IP addresses only if the address is defined in the
scope.special table. This table defines management IP addresses.

Enable VLAN Modelling
Enable this setting to model VLANs in this discovery. If you enable VLAN
modeling, then you can partition discovered topologies based on VLAN
membership. Disabling VLAN modeling reduces discovery time.

Enable SysName Naming
Enable this setting to name devices using the value of the SNMP sysName
variable as the main source of naming information. The sysName variable
must be set and must be unique within the network. Enabling this setting
has no impact on the discovery time, because the sysName variable is
retrieved by the Details agent by default.

Enable Caching of Discovery Tables
Enable this setting to cache data during the discovery process in order to
enable data recovery if the Discovery engine, ncp_disco, fails. A discovery

1. Devices are typically discovered using IP addresses retrieved by the AssocAddress agent. If a device is discovered using an IP
address that was not retrieved by the AssocAddress agent, then the IP address is probably non-standard. This type of IP address
is called a virtual IP address. Examples of virtual IP addresses are HSRP and VRRP addresses, which are shared by multiple
devices for fault tolerance. Other examples include certain management interfaces that might be on a single device but do not
appear in the IP table for security reasons. Virtual IP addresses include management addresses. A management address is an IP
address whose only role is to manage the device. Management addresses are often on a separate network isolated from the
customer traffic. These addresses are defined in the scope.special table.

40 IBM Tivoli Network Manager IP Edition: Discovery Guide

running in this mode is slower than a standard discovery, because of the
extra time required to store data on the disk throughout the discovery
process.

Enable File Finder Verification
Enable this setting to use the Ping finder to verify the existence of devices
specified in the files used by the File finder. If you enable this setting,
ensure that the Ping finder is enabled. Enable this setting if you are not
sure that the devices are still connected to the network. For example, you
might want to enable this setting if your network is rapidly changing.

Enable Inference of Dumb Hubs
Configure the discovery to infer the existence of an unmanaged hub if the
discovery finds a port that is connected to more than one item. The
discovery then connects that port to an unmanaged hub, and also connects
all the other port involved in the connection to the unmanaged hub. This
type of discovery makes the topology much clearer. 2 By selecting this
option, you instruct the discovery to activate the AddUnmanagedHub
stitcher, which manages the inference of dumb hubs.

Enable Rediscovery Rebuild Layers
Enable this setting to rebuild the topology layers following a partial
rediscovery. If you specify that topology layers are rebuilt following partial
rediscovery, the result is an accurate topology showing all connectivity.
However, the process of adding new devices takes longer.

Tip: To configure a partial rediscovery to run as quickly as possible,
disable this option.

Enable RT-Based MPLS VPN Discovery
This setting is relevant to MPLS discoveries. Enable this setting to display
provider edge devices only (RT-based MPLS discovery).

Enable Rediscovery of Related Devices
By default the remote neighbors of a device are not discovered, even if
rediscovery of that device indicates that the remote neighbors have
changed. The remote neighbors can be rediscovered on the next full
rediscovery. Enable this setting if you want to change this default behavior
and rediscover any changed remote neighbors when rediscovering that
device.

Tip: To configure a partial rediscovery to run as quickly as possible,
disable this option.

Enable ifName/ifDescr Interface Naming
Changes the default naming convention for discovered interfaces. Names
interfaces using data from the SNMP interfaces table ifName and ifDescr
fields as appropriate. For example, Fa0/0, Gi 1.0.2:0, Gigabit Ethernet
4/1. If you change the default naming convention for discovered interfaces,
you must change the BuildInterfaceName stitcher to specify your naming
convention.

2. For example, if port number 1 on switches A, B, C, and D are all connected to each other, then this discovery option inserts an
unmanaged hub E into the topology. The discovery then connects port 1 on switch A to E, rather than to B. It similarly connects
port 1 on switches B, C, and D to E. A connection is created between device A and hub device E. Hub device E, and the
connections to this device, might not actually exist in reality.

Chapter 2. Configuring network discovery 41

Tip: Some devices might report interface names and descriptions that are
too long to display properly in the topology display. If there are devices
that report long or incorrect interface names and descriptions, disable this
setting.

Enable Inference of PEs using BGP data on CEs
Discovers intervening provider networks as a “third-party” object on
multiple networks that run across a provider network. Examples of this
type of network include enterprise VPNs across a provider MPLS core
network. Select this option if you want to link all your networks in a single
topology and perform root cause analysis (RCA) across your networks.

This option infers the existence of inaccessible provider-edge (PE) devices
by using the BGP data on the customer-edge (CE) devices that point to the
PE devices. In order to discover this BGP data, the BGP discovery agents
must be enabled.

You can also optionally specify which of the inferred PE devices are valid
devices, by populating the scope.inferMPLSPEs table, using standard
format scope entries, as in the scope.zones table. If populated this table
allows you to define which IP addresses you see on CE devices that you
consider valid PE devices. Use this option when you have inaccessible
devices that are connected by BGP but which are not actually PE devices.

Enable Inference of MPLS CE routers on /30 subnets
Generates Service-Affected Events on customer VPNs. Select this option if
you are a service provider without access to customer CE routers.

42 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related concepts:
“About Service Affected Events” on page 104
A Service Affected Event (SAE) alert warns operators that a critical customer
service has been affected by one or more network events.
“Option to rebuild topology layers” on page 301
You can specify whether to rebuild the topology layers following a partial
rediscovery. Using this option, you can increase the speed of partial rediscovery.
Related tasks:
“Configuring MPLS discovery method” on page 108
You can configure MPLS discovery in either of two ways: Route Target (RT)-based
discovery; Label Switched Path (LSP)-based discovery.
“Inferring the existence of CE routers” on page 109
You can infer the existence of your customers’ CE routers by making specifications
in the advanced discovery configuration options within the Discovery
Configuration GUI.
Related reference:
“Main discovery stitchers” on page 341
This topic lists all discovery stitchers.
“Failover database” on page 270
Failover recovery with the failover database is not to be confused with agent and
finder failover recovery, which are configured directly from the disco.config table.
When selected, agent and finder failover recovery operate regardless of whether
recovery with the failover database is implemented.
“disco.config table” on page 183
The config table configures the general operation of the discovery process.
“inferMPLSPEs table” on page 202
Use the inferMPLSPEs table when enabling inference of inaccessible provider-edge
(PE) devices by using the BGP data on the customer-edge (CE) devices. This table
enables you to optionally specify which zones to process to determine which of the
inferred PE devices are valid devices.

Starting a discovery
After you configure a discovery, you can start and, if necessary, stop the discovery.

Make any required discovery configuration changes before you launch the
discovery.

You can start the following types of discovery:

Discovery
Run a full discovery to discover your network for the first time, or to
refresh the network topology if you know the network has changed.

Partial discovery
Run a partial discovery if you know that the changes to your network are
limited to a small number of devices. You need to configure scoping and
seeding as part of starting each partial discovery. If the relationship of the
devices that are in scope with their neighboring devices has changed, then
the neighboring devices may also be discovered. If the partial discovery
needs to discover a large amount of devices based on connectivity
information, then a full discovery is started.

Note: If you stop a running discovery, you must then do a full discovery before
you are able to do a partial discovery.

Chapter 2. Configuring network discovery 43

To start a discovery, complete the following steps.
1. Click Discovery > Network Discovery Status.
2. Select the domain in which you want to run a discovery from the Domain

menu. You can start to type the name of the domain, and matching domains
are listed below the Domain field.

3. Start a full or partial discovery:

v To start a full discovery, click Start Discovery only. The discovery
starts.

Important: In Network Manager V3.9 there is no longer any need to press
Stop Discovery and then Start Discovery in order to pick up discovery
configuration changes. Network Manager picks up any saved discovery

configuration changes when you click Start Discovery .
v To start a partial discovery, click the downward-facing arrow next to the

Start Discovery button and select Start Partial Discovery from the
menu (if a full discovery has not been run since the last time that the
discovery engine, ncp_disco, was started, the option to start a partial
discovery is grayed out). The Partial Discovery window is displayed. Specify
the IP addresses and subnets that contain the devices to be discovered:

a. Under Partial Discovery, select the required nodes and subnets.
b. To add a new subnet or node, click New.

c. Complete the fields as follows and click OK:

Rediscover
Select one of the following options:

IP Address
Type the required IP address.

Subnet
Type the required subnet and specify the number of
netmask bits. The Netmask field is automatically updated.

d. To add new scope zones, click Scope.

e. To add a new discovery scope zone click New . To edit an existing
scope zone, click the required entry in the list.

f. Complete the fields as follows and click OK:

Scope By:
Select one of the following options:

Subnet
Type the required subnet and specify the number of netmask
bits. The Netmask field is automatically updated.

You can specify a subnet or an individual IP address using
these fields.
v For example, to specify a Class C subnet 10.30.2.0, type

10.30.2.0/24, where 10.30.2.0 is the subnet prefix, and
24 is the subnet mask.

44 IBM Tivoli Network Manager IP Edition: Discovery Guide

v To specify an individual device, type an IP address and a
subnet mask of 32. For example, type 10.30.1.20/32.

Wildcard
Use an asterisk (*) as a wildcard.

For example, to specify a scope of all IP addresses that begin
with the 10.30.200. subnet prefix, type 10.30.200.*.

Restriction: Network Manager does not support the IPv4–mapped
IPv6 format and expects all IPv6 addresses to be in standard
colon-separated IPv6 format. For example, Network Manager does
not support an IPv4–mapped IPv6 address such as
::ffff:192.0.2.128. Instead enter this address as ::ffff:c000:280
(standard colon-separated IPv6 format).

Protocol
Select the required Internet protocol: IPv4 or IPv6.

Action
Define the subnet range as an inclusion zone or exclusion zone. If
the subnet range is an inclusion zone that you intend to ping during
the discovery, click Add to Ping Seed List. Clicking this option
automatically adds the devices in the scope zone as a discovery seed
devices.

Restriction: The Add to Ping Seed List option is not available for
IPv6 scope zones. This prevents ping sweeping of IPv6 subnets,
which can potentially contain billions of devices to be pinged. Ping
sweeping of IPv6 subnets can therefore result in a non-terminating
discovery.

g. Click OK then click Go. When a full or partial discovery is running, the

Start Discovery button is toggled off .

4. To stop a discovery, click Stop Discovery . The discovery might take a
short time to stop, during which time both the Start Discovery and Stop
Discovery buttons are toggled off. If you stop a discovery, you cannot then do
a partial discovery until after the next full discovery.

Note: When you stop a discovery, the discovery cache is lost. This is why you
must wait for the completion of the next full discovery before being able to
perform a partial discovery. It is possible to configure the Discovery engine to
save the discovery cache as the discovery is running, which would enable you
to run a partial discovery immediately following the manual stop of a
discovery. You can configure the Discovery engine to save the discovery cache
by clicking Enabling Caching of Discovery Tables in the Advanced tab.

While the discovery is running, you can monitor the progress of the discovery.

After the discovery is complete, the Start Discovery button is toggled on, and you
can run another full or partial discovery at any time. If the Event Gateway Disco
plug-in is enabled, then a new discovery can be triggered automatically when a
reboot event (event ID of NmosSnmpReboot triggered by the rebootDetection poll
policy) is received.

Chapter 2. Configuring network discovery 45

Related concepts:
“About types of discovery” on page 1
Different terms are used to describe network discovery, depending on what is
being discovered and how the discovery has been configured. You can run
discoveries, rediscoveries, full and partial discoveries, and you can set up
automatic discovery.
Related tasks:
“Monitoring network discovery from the GUI” on page 131
From the Active Discovery Status page, you can monitor the status and progress of
the current discovery, investigate the work of the discovery agents, and view
details of the last discovery.
“Starting partial discovery from the GUI” on page 158
Starting a partial discovery involves defining a seed and scopes.
“Troubleshooting an idle discovery” on page 168
If you start the discovery, and after some minutes no devices have been
discovered, follow these troubleshooting steps.

Schemas and tables for GUI discovery parameters
Use this reference information to learn to which schemas and table the settings
made on the tabs of the Network Discovery Configuration page are saved.

The following table describes the tables to which the settings made on each tab of
the Network Discovery Configurationpage are saved. In these tables,
DOMAIN_NAME represents the name of the network domains in your
deployment, for example NCOMS.

Table 2. Schemas and tables to which the discovery parameters are mapped

Network
Discovery
Configuration
tab Description Schema or table name

Scope The zones of the network (that is, subnet
ranges) that you want to include in the
discovery, and the zones that you want to
exclude.

DiscoScope.DOMAIN_NAME.cfg

Seed The location from which to begin discovering
devices. This might be one or more IP
addresses, or subnet addresses. To seed the
discovery, the following finders are used: Ping
finder and File finder.

Ping finder:
DiscoPingFinderSeeds.DOMAIN_NAME.cfg

File finder:
DiscoFileFinderParseRules.DOMAIN_NAME.cfg

Full Discovery
Agents and
Partial
Rediscovery
Agents

The discovery agents to be used to investigate
device connectivity. Default agents are
provided for the type of discovery you want to
perform, for example a layer 2 or layer 3
discovery. You can select different set of agents
for full discoveries and for partial discoveries.
The agents vary because connectivity
information varies with the technology of the
hardware in the network.

DiscoAgents.DOMAIN_NAME.cfg

Device Access SNMP community strings and Telnet
parameters that Network Manager uses to
interrogate devices that use SNMP and Telnet.

SNMP community strings:
SnmpStackSecurityInfo.cfg

Telnet access: TelnetStackPasswords.cfg

46 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 2. Schemas and tables to which the discovery parameters are mapped (continued)

Network
Discovery
Configuration
tab Description Schema or table name

Filters Use filters to filter out devices either before
discovery or after discovery. You can filter out
devices based on a variety of criteria, including
location, technology, and manufacturer.
Prediscovery filters prevent discovered devices
from being polled for connectivity information.
Post-discovery filters prevent discovered
devices from being passed to MODEL.

DiscoSchema.DOMAIN_NAME.cfg

DNS Access to DNS services that are used to
perform domain name lookups.

DiscoDNSHelperSchema.cfg

NAT The data that provides the discovery mappings
between address space data and real device IP
addresses to facilitate further discovery.

DiscoSchema.DOMAIN_NAME.cfg

Multicast Multicast groups and sources used by the
Discovery engine to configure multicast scopes.

DiscoScope.DOMAIN_NAME.cfg

Advanced Advanced settings control features of the
discovery such as concurrent processes and
time-outs. Use these parameters to increase the
speed of the discovery, but balance the speed
with the load on the server. Generally, a faster
discovery results in more memory usage on the
server.

DiscoSchema.DOMAIN_NAME.cfg

Discovering the network using the command-line interface
As an experienced user, you can configure and track a network discovery using
configuration files and database queries.
Related tasks:
“Monitoring discovery from the command line.” on page 136
When the ncp_disco process is running, you can monitor the progress of the
discovery by using the OQL Service Provider, the ncp_oql process, to query the
discovery databases to determine what is happening at any time.

Discovery configuration files
Experienced users can configure the discovery by editing the discovery
configuration files.

To configure the discovery using the command-line interface (command line), edit
the discovery configuration files and create or edit inserts into the databases of the
discovery processes.

Note: The DiscoSchema.cfg configuration file contains the schemas for all the
discovery databases. Unlike the files listed below, the DiscoSchema.cfg
configuration file contains no insert statements. You can view this file but it must
not be edited.

When ncp_disco is running, it periodically scans the agents and stitchers
directories and loads any new or modified stitcher and discovery agent definitions.

Chapter 2. Configuring network discovery 47

Table 3 shows which configuration files to edit to configure the discovery, and
whether the configuration can also be done using the Discovery Configuration
GUI.

Table 3. User-editable discovery configuration files

Discovery configuration task Configuration file GUI tab

Scoping discovery

Defining inclusion and
exclusion zones

DiscoScope.cfg Scope

Ignoring discovery scope DiscoScope.cfg Scope

Seeding discovery

Seeding DiscoPingFinderSeeds.cfg Seed

Running multiple instances
of a finder

Configuring broadcast and
multicast address pinging

DiscoPingFinderSeeds.cfg Advanced

Using the File finder DiscoFileFinderParseRules.cfg Seed

Enabling File finder device
verification

DiscoConfig.cfg
Advanced

Enabling Ping verification DiscoConfig.cfg

Using and configuring the
Collector finder

DiscoCollectorFinderSeeds.cfg

SNMP

Configuring SNMP
community strings and
passwords

SnmpStackSecurityInfo.cfg Passwords

Configuring the SNMP
helper

DiscoSnmpHelperSchema.cfg Advanced

Overriding SNMP helper
settings for specific devices
and subnets

Telnet

Configuring Telnet access to
network devices

TelnetStackPasswords.cfg Passwords

Configuring the Telnet
helper

DiscoTelnetHelperSchema.cfg Advanced

Configuring a context-sensitive
discovery

DiscoConfig.cfg

Agents

Enabling and disabling
discovery agents

DiscoAgents.cfg Full Discovery
Agents
Partial
Rediscovery
Agents

48 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 3. User-editable discovery configuration files (continued)

Discovery configuration task Configuration file GUI tab

Filtering devices sent to the
agents

Discovery agent definition files

Filters
Filtering topology data
returned by an agent

Discovery agent definition files

Filtering topology data
returned by all agents

DiscoAgentReturns.filter

Changing the number of
threads used by an agent

DiscoAgents.cfg

Enabling multi-threaded
operation for Perl agents

Discovery agent definition files

Enabling and disabling
partial matching

IpForwardingTable.agnt agent definition
file (for modern devices that use
RFC2096)
IpRoutingTable.agnt agent definition file
(for older devices that use RFC1213).

Restricting discovery

Restricting device detection DiscoScope.cfg
DiscoPingFinderSeeds.cfg

Scope
Seed

Restricting device
interrogation

DiscoScope.cfg
Restricting device
instantiation

Configuring the DNS helper
services

DiscoDNSHelperSchema.cfg DNS

Configuring a NAT discovery NATTextFileAgent agent
NATGateway agent

NAT

Setting advanced configuration

Advanced File Finder
Configuration

Advanced Ping Finder
Configuration

Advanced DNS Helper
Configuration

Advanced SNMP Helper
Configuration

Advanced Telnet Helper
Configuration

DiscoFileFinderParseRules.cfg

DiscoPingFinderSeeds.cfg

DiscoDNSHelperSchema.cfg

DiscoSnmpHelperSchema.cfg

DiscoTelnetHelperSchema.cfg

Note: As an experienced user, you can
set more advanced configuration
parameters in the configuration files
than are available in the Advanced tab
of the GUI.

Advanced

Chapter 2. Configuring network discovery 49

Discovery agent definition files
The discovery agent definition files define the operation of the discovery agents.

Filtering devices using the definition files

Note: Network Manager kills all discovery agents at the end of data collection
stage 3. This ensures that the next discovery restarts the agents and forces the
agents to reread their configuration files at the beginning of a discovery, thereby
detecting any changes to the configuration files.

You can apply a filter to a discovery agent by editing the supported devices filter
within the DiscoAgentSupportedDevices(); section of the discovery agent
definition file ($NCHOME/precision/disco/agents/*.agnt). All discovery agents
have a definition file in this directory, regardless of whether the agent is text-based
or precompiled.

The supported devices filter is a filter against the attributes of the
agentTemplate.despatch table.

The DiscoAgentSupportedDevices(); section accepts full OQL comparison tests
using comparison operators such as like, < , > , = , and <>. Detailed information
about comparison tests in OQL can be found in the IBM Tivoli Network Manager IP
Edition Language Reference.

Tip: Altering agent definition files can introduce parse errors. To check your agent
for parse errors, run the agent in debug mode and examine the debug output.

Example: discovering devices that use CDP

The CDP discovery agent, defined in the $NCHOME/precision/disco/agents/
CDP.agnt agent file, must be enabled before the discovery to detect devices that
use CDP. Enable the CDP agent by setting the value of the m_Valid column to 1, as
shown in the following insert.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)
values
(

’CDP’, 1, 7, 0, 3
);

Sample: filtering devices sent to the CDP agent

The following example shows the DiscoAgentSupportedDevices(); section of the
CDP.agnt agent definition file. Only network entities that match the specified
Object IDs are processed by the CDP agent, that is, only devices that use the Cisco
Discovery Protocol. The CDP agent does not process devices with the Object ID
1.3.6.1.4.1.9.1.226.

DiscoAgentSupportedDevices
(

" (
(m_ObjectId like ’1\.3\.6\.1\.4\.1\.9\..*’)
AND
(m_ObjectId <> ’1.3.6.1.4.1.9.1.226’)

) "
);

50 IBM Tivoli Network Manager IP Edition: Discovery Guide

Sample: using wildcards in device filters

The following example shows the use of wild cards in the IP address column. The
agent only accepts devices with an IP address beginning 10.10.2.

DiscoAgentSupportedDevices
(

" (m_UniqueAddress like ’10\.10\.2\..*’) "
);

Example: using multiple device filter conditions

The following example shows the combination of multiple filter conditions. The
agent accepts only devices that have the Object ID 1.3.6.1.4.1.9.5.7.. have an IP
address starting with 10.10.. and do not have the name clandestine.

DiscoAgentSupportedDevices
(

"(
(m_ObjectId = ’1.3.6.1.4.1.9.5.7’)
AND
(m_UniqueAddress like ’^10\.10\..*’)
AND
(m_Name not like ’.*[cC]landestin[eE].*’)

)"
);

Enabling multi-threaded operation for Perl discovery agents

The number of threads used by discovery agents is set in the DiscoAgents.cfg
configuration file. Perl agents must have multi-threaded operation enabled before
the setting in the DiscoAgents.cfg configuration file has any effect.

To enable multi-threaded operation for a Perl discovery agent, add the following
line to its definition file:
DiscoAgentDefaultThreads(10);

The insert above specifies that the agent uses 10 threads by default. If you set a
different number of threads in the DiscoAgents.cfg configuration file, that value
overrides the value in the agent definition file.

Restriction: Many of the add-on CPAN modules often used with Perl are not
thread safe. Perl discovery agents using such modules might need to be restricted
to a single thread.

Filtering topology data returned by a discovery agent

To filter topology data returned by a single agent, define a filter within the relevant
agent (.agnt) file.

Sample: filtering out subscriber cable-modem interfaces

The CMTS.agnt agent file retrieves data from cable modems connected to a cable
modem terminating services device. This example describes a filter added to the
CMTS.agnt file which filters out subscriber cable modem interfaces from topology
data returned for the CMTS devices. The example filter is as follows:
DiscoAgentReturnsFilterList
{

DiscoReturnsFilter
{

Chapter 2. Configuring network discovery 51

"(
m_LocalNbr->m_IfType = 229
)"

}
};

Sample: defining multiple topology filters

The following example illustrates how to define multiple topology data filters
within an agent. The first filter specifies that each time a record is returned where
the interface ifIndex value is 4, then the m_Name, m_HaveAccess,
m_LocalNbr->m_SubnetMask, and m_RemoteNbr->m_RemoteNbrPhysAddr fields
must be deleted from the record. The second filter deletes records returned when
the interface ifIndex value is 5.
DiscoAgentReturnsFilterList
{

DiscoReturnsFilter
{

"(
m_LocalNbr->m_IfIndex = 4
)"
DiscoDeleteFields {

"m_Name",
"m_HaveAccess",
"m_LocalNbr->m_SubnetMask",
"m_RemoteNbr->m_RemoteNbrPhysAddr",

}
}
DiscoReturnsFilter
{

"(
m_LocalNbr->m_IfIndex = 5
)"

}
};

Sample: Disabling partial matching

The following example could be appended to the IpForwardingTable.agnt
definition file to ensure that if a router with m_ObjectId='1.3.6.1.4.1.9.1.48' is
discovered (that is, a Cisco 7505 router), partial matching is attempted only when
the router is running IOS version 12.2 or higher.

DiscoRouterPartialMatchRestrictions
(

"(m_ObjectId=’1.3.6.1.4.1.9.1.48’, m_OSVersion>=’12.2’,
m_MibVar=’sysDescr’)"

);

Sample: Disabling partial matching using wildcards

The following example ensures that partial matching is not used on Cisco 2600
routers, Cisco 7505 routers running an IOS revision lower than 12.2, and Redstone
routers.

DiscoRouterPartialMatchRestrictions
(

"(m_ObjectId=’1.3.6.1.4.1.9.1.209’),
(m_ObjectId=’1.3.6.1.4.1.9.1.48’, m_OSVersion>=’12.2’,
m_MibVar=’sysDescr’),

(m_ObjectId like ’1\.3\.6\.1\.4\.1\.2773\..*’)"
);

52 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“disco.agents table” on page 193
The agents table specifies the discovery agents that DISCO uses for the discovery.
Every agent that you want to run must have an insertion into the disco.agents
table within the DiscoAgents.cfg configuration file that enables that agent (set
m_Valid=1). If m_Valid=0, the agent is not run.
“Agent Template database” on page 274
The databases of each discovery agent are based on a template called the
agentTemplate database.

DiscoAgents.cfg configuration file
The DiscoAgents.cfg configuration file defines which agents run during a
discovery.

Database table used

The DiscoAgents.cfg configuration file can be used to configure inserts into the
disco.agents database table.

Sample: enabling the IpRoutingTable discovery agent

The following example activates the IpRoutingTable discovery agent.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)

values
(

’IpRoutingTable’, 1, 0, 0, 2
);

Sample: enabling the Details and Associated Address agents

The following example OQL inserts activate the Details and Associated Address
agents.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)

values
(

’Details’, 1, 0, 0, 1
);

insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)

values
(

’AssocAddress’, 1, 0, 0, 2
);

Sample: enabling the ARP cache agent

The ARP Cache agent assists in MAC address-to-IP address resolution during the
discovery. You must enable this agent to run during a layer 2 discovery. The
following example shows how to ensure that the ARP Cache agent runs during a
discovery.

Chapter 2. Configuring network discovery 53

insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)
values
(

’ArpCache’, 1, 0, 0, 2
);

Sample: deactivating the StandardSwitch and SuperStack3ComSwitch
agents

The following example deactivates the StandardSwitch and the
SuperStack3ComSwitch discovery agents.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)

values
(

’StandardSwitch’, 0, 1, 1, 3
);

insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)

values
(

’SuperStack3ComSwitch’, 0, 1, 1, 3
);

Sample: changing the number of threads used by the IpRoutingTable
discovery agent

The following example sets the number of threads used by the IpRoutingTable
discovery agent to 50. Increasing the number of threads used by an agent allows
the agent to process more devices at once, and can speed up discovery. However,
increasing the number of threads used by an agent also uses more memory.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence, m_NumThreads
)

values
(

’IpRoutingTable’, 1, 0, 0, 2, 50
);

Sample: changing the number of threads used by the NMAPScan Perl
discovery agent

The following example sets the number of threads used by the NMAPScan Perl
discovery agent to 50. To define the number of threads used by a Perl discovery
agent, you must first enable multiple threads for that agent in the discovery agent
definition file.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence, m_NumThreads
)

54 IBM Tivoli Network Manager IP Edition: Discovery Guide

values
(

’NMAPScan’, 1, 0, 0, 2, 50
);

Related reference:
“disco.agents table” on page 193
The agents table specifies the discovery agents that DISCO uses for the discovery.
Every agent that you want to run must have an insertion into the disco.agents
table within the DiscoAgents.cfg configuration file that enables that agent (set
m_Valid=1). If m_Valid=0, the agent is not run.

DiscoAgentReturns.filter configuration file
The DiscoAgentReturns.filter configuration file allows you to apply a topology
data filter to data returned by all discovery agents.

Filtering topology data returned by all agents

The $NCHOME/precision/disco/agents/DiscoAgentReturns.filter configuration
file filters the same topology data from all of the agent returns tables. The syntax
used in this file is the same as the syntax used in topology filters in the discovery
agent definition files.

Sample: filtering out subscriber cable-modem interfaces

The following example filters out subscriber cable modem interfaces from topology
data:
DiscoAgentReturnsFilterList
{

DiscoReturnsFilter
{

"(
m_LocalNbr->m_IfType = 229
)"

}
};

Related concepts:
“Agents” on page 303
Discovery agents retrieve information about devices in the network. They also
report on new devices by finding new connections when investigating device
connectivity. Discovery agents are used for specialized tasks. For example, the ARP
Cache discovery agent populates the Helper Server database with IP
address-to-MAC address mappings.

DiscoARPHelperSchema.cfg configuration file
The DiscoARPHelperSchema.cfg configuration file performs IP address to MAC
address resolution.

Database used

The DiscoARPHelperSchema.cfg configuration file defines inserts into the
ARPHelper.configuration database table.

Sample: Configuring the ARP helper

The following example insert configures the ARP helper to use one thread.

Chapter 2. Configuring network discovery 55

insert into ARPHelper.configuration
(

m_NumThreads
)
values
(

1
);

Related reference:
“The ARP helper database” on page 248
The ARP helper database is defined by the DiscoARPHelperSchema.cfg
configuration file Its fully qualified database table name is
ARPHelper.configuration.

DiscoCollectorFinderSeeds.cfg configuration file
The DiscoCollectorFinderSeeds.cfg configuration file defines how topology data
is acquired from Element Management System (EMS) collectors during discovery.

Database used

The DiscoCollectorFinderSeeds.cfg configuration file defines inserts into the
collectorFinder database.

Note that there is another file associated with the collectorFinder database, the
DiscoCollectorFinderSchema.cfg file, but you should not need to alter this file.

Sample: configuring a single collector

The following example seeds a single collector running on the local server. The
example does not specify values for other fields, such as m_DataSourceId and
m_NumRetries, and they automatically take the default values from the
configuration table.
insert into collectorFinder.collectorRules

(m_Port)
values

(8082);

Related reference:
“collectorFinder database” on page 226
The collectorFinder database defines the operation of the Collector finders.

DiscoDNSHelperSchema.cfg configuration file
The DiscoDNSHelperSchema.cfg configuration file defines access to DNS, which
enables the discovery to do domain name lookups, by configuring the DNS helper.

Database tables used

The DiscoDNSHelperSchema.cfg configuration file can be used to configure inserts
into the following database tables:
v DNSHelper.configuration
v DNShelper.methods

Sample: configuring the DNS helper

The following example inserts configure the DNS helper using the information in
the DNSHelper.configuration database table and the DNShelper.methods database

56 IBM Tivoli Network Manager IP Edition: Discovery Guide

table. The example shows inserts into the DNShelper.methods database table
corresponding to the following method types:
v 0 - System
v 1 - DNS using m_NameDomain to specify a domain suffix to append to all

discovered device names.
v 1 - DNS using m_NameDomainList to specify a list of expected domain suffixes.
v 2 - File
insert into DNSHelper.configuration
(

m_NumThreads, m_MethodList, m_TimeOut
)
values
(

1, [’HostsFile’] , 5
);

insert into DNSHelper.methods
(

m_MethodName, m_MethodType
)
values
(

"HostService", 0
);

insert into DNSHelper.methods
(

m_MethodName, m_MethodType, m_NameServerAddr, m_TimeOut, m_NameDomain
)
values
(

"abcIPv6DNS", 1, "2222:15f8:106:203:250:4ff:fee8:6d75", 3,
"tivlab.raleigh.ibm.com"
);

insert into DNSHelper.methods
(

m_MethodName, m_MethodType, m_TimeOut, m_NameServerAddr, m_NameDomainList
)
values
(

"defIPv6DNS", 1, 3, "2222:15f8:106:203:250:4ff:fee8:6d75",
[’uk.eu.org’,
’fra.eu.org’,
’de.eu.org’,
’it.eu.org’,
’sp.eu.org’]

);

insert into DNSHelper.methods
(

m_MethodName, m_MethodType, m_FileName, m_FileOrder
)
values
(

’HostsFile’, 2, ’etc/hosts’, 1
);

Chapter 2. Configuring network discovery 57

Related reference:
“The DNS helper database” on page 248
The DNS helper database is defined by the DiscoDNSHelperSchema.cfg
configuration file. Its fully qualified database table names are:
DNSHelper.configuration; DNShelper.methods.

DiscoFileFinderParseRules.cfg configuration file
The DiscoFileFinderParseRules.cfg file can be used to specify the files to be parsed
for a list of IP addresses of devices that exist on the network.

Database tables used

This configuration file can be used to configure inserts into the following database
tables:
v fileFinder.parseRules
v fileFinder.configuration

Note that there is another configuration file associated with the fileFinder database,
the DiscoFileFinderSchema.cfg file, but you should not need to alter this file.

Sample: configuring the File finder to use five threads

The following example insert configures the File finder to use five threads.
insert into fileFinder.configuration

(m_NumThreads)
values

(5);

Example: configuring the File finder to parse /var/tmp/logged_hosts

The following example configuration instructs the File finder to parse an example
text file, logged_hosts, that has been saved in the /var/tmp directory. The contents
of the example file are shown below.
vi /var/tmp/logged_hosts

172.16.1.21 dharma 04:02:08
172.16.1.201 phoenix 19:07:08
172.16.1.25 lnd-sun-tivoli 15:10:00
172.16.2.33 ranger 19:07:07
~
"/var/tmp/logged_hosts" [Read only] 4 lines, 190 characters

The three columns in this example file respectively contain an IP address, the
device name, and a time value. The columns are separated by white space, which
can be multiple tabs, spaces, or a combination of both. You could configure the File
finder to parse this example text file using an insert similar to the example.
insert into fileFinder.parseRules
(

m_FileName, m_Delimiter, m_ColDefs
)
values
(

"/var/tmp/logged_hosts",
"[]+",
[

{
m_VarName="m_UniqueAddress",
m_ColNum=1

58 IBM Tivoli Network Manager IP Edition: Discovery Guide

},
{

m_VarName="m_Name",
m_ColNum=2

}
]

);

The above insert specifies that:
v The full path and name of the file is /var/tmp/logged_hosts.
v The source-file delimiter is white space. The column delimiter is indicated in the

insert using a simple regular expression, [tab space]+ . You must press the tab
and space keys rather than typing \t to represent the tab character.

v The first column contains IP addresses and must be mapped to the
m_UniqueAddress column of the finders.returns table.

v The second column contains host names and must be mapped to the m_Name
column of the finders.returns table.

Because the third column in the example text file is not relevant, it has not been
mapped to a column of finders.returns and is ignored by the File finder during the
discovery.

Example: configuring the File finder to parse the /etc/hosts file

The following insert instructs the File finder to:
v Parse /etc/hosts.
v Treat white space as the data separator.
v Use the following column definitions:

– m_UniqueAddress for the first column
– m_Name for the second column

insert into fileFinder.parseRules
(

m_FileName,
m_Delimiter,
m_ColDefs

)
values
(

"/etc/hosts",
"[]",
[

{
m_VarName="m_UniqueAddress",
m_ColNum=1

},
{

m_VarName="m_Name",
m_ColNum=2

}
]

);

Sample: configuring the File finder to parse /etc/defaultrouter

The following insert instructs the File finder to:
v Parse /etc/defaultrouter.
v Treat one or more occurrences of white space as the data separator.

Chapter 2. Configuring network discovery 59

v Use m_UniqueAddress as the column definition.
insert into fileFinder.parseRules
(

m_FileName,
m_Delimiter,
m_ColDefs

)
values
(

"/etc/defaultrouter",
"[]+",
[

{
m_VarName="m_UniqueAddress",
m_ColNum=1

}
]

);

Related reference:
“fileFinder database” on page 229
The fileFinder database defines the operation of the File finder.

DiscoHelperServerSchema.cfg configuration file
The DiscoHelperServerSchema.cfg configuration file defines the contents of the
several helper databases.

Database tables used

This configuration file can be used to configure inserts into the following database
tables.

ARP helper database tables:

v ARPHelper.ARPHelperTable
v ARPHelper.ARPHelperConfig

DNS helper database tables:

v DNSHelper.DNSHelperTable
v DNSHelper.DNSHelperConfig

Ping helper database tables:

v PingHelper.PingHelperTable
v PingHelper.PingHelperConfig

SNMP helper database tables:

v SnmpHelper.SnmpHelperTable
v SnmpHelper.SnmpHelperConfig

Telnet helper database tables:

v TelnetHelper.TelnetHelperTable
v TelnetHelper.TelnetHelperConfig

XMLRPC helper database tables:

v XmlRpcHelper.XmlRpcHelperTable
v XmlRpcHelper.XmlRpcHelperConfig

60 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“The Helper Server databases” on page 233
When the Helper Server starts, it creates a database for each helper that is to be
run.

DiscoPingFinderSeeds.cfg configuration file
The DiscoPingFinderSeeds.cfg configuration file is used for seeding the Ping finder
and restricting device detection.

Database tables used

The DiscoPingFinderSeeds.cfg configuration file can be used to configure inserts
into the following database tables:
v pingFinder.pingRules
v pingFinder.scope

Note that there is another configuration file associated with the pingFinder
database, the DiscoPingFinderSchema.cfg file, but you should not need to alter this
file.

Note: If you are seeding an IPv6 discovery, bear in mind that there are potentially
billions of devices to be pinged within a single IPv6 subnet. To ensure that
discovery completes, you must specify a sufficiently large netmask if you specify
an IPv6 subnet as a ping seed.

Sample: seeding the Ping finder with a single device address

The following example insert defines a single seed with IP address of 10.10.2.224.
This example does not specify values for m_NumRetries and m_TimeOut because
they automatically take the default values from the configuration table.

Restriction: Network Manager does not support the IPv4–mapped IPv6 format
and expects all IPv6 addresses to be in standard colon-separated IPv6 format. For
example, Network Manager does not aupport an IPv4–mapped IPv6 address such
as ::ffff:192.0.2.128. Instead enter this address as ::ffff:c000:280 (standard
colon-separated IPv6 format).
insert into pingFinder.pingRules

(m_Address, m_RequestType)
values

("10.10.2.224", 1);

Sample: seeding the Ping finder with a class B subnet address

The following example insert defines a single class B subnet as a seed.
insert into pingFinder.pingRules

(m_Address, m_RequestType, m_NetMask)
values

("10.10.0.0", 2, "255.255.0.0");

Sample: seeding the Ping finder with class C subnet addresses

The following example insert defines two Class 2 subnets as seeds.
insert into pingFinder.pingRules

(m_Address, m_RequestType, m_NetMask)
values

("10.10.2.0", 2, "255.255.255.0");

Chapter 2. Configuring network discovery 61

insert into pingFinder.pingRules
(m_Address, m_RequestType, m_NetMask)

values
("10.10.47.0", 2, "255.255.255.0");

Sample: restricting device detection

The following example insert configures the Ping finder to use the scope.zones
table and use the discovery scope.
insert into pingFinder.scope

(m_UseScope, m_UsePingEntries)
values

(1, 1);

Important: Other combinations of m_UseScope and m_UsePingEntries filters are
not recommended. Specifying values (0,0) results in an unbounded discovery,
while specifying values (0,1) results in devices that you do not want to discover
being needlessly pinged.
Related reference:
“pingFinder database” on page 230
The pingFinder database defines the operation of the Ping finder.
“IPv6 subnet mask sizes” on page 22
There are potentially billions of devices to be pinged within a single IPv6 subnet.
To ensure that discovery completes, you must specify a sufficiently large netmask
if you specify an IPv6 subnet as a ping seed.

DiscoPingHelperSchema.cfg configuration file
The DiscoPingHelperSchema.cfg configuration file defines how devices are to be
pinged.

Database table used

The DiscoPingHelperSchema.cfg configuration file can be used to configure inserts
into the pingHelper.configuration database table.

In this example configuration of the DiscoPingHelperSchema.cfg configuration file,
the parameters specify to:
v Use 20 threads of process execution.
v Wait a maximum of 250 ms for a reply from a device.
v Retry unresponsive devices a maximum of five times.
v Wait 50 ms between pinging devices in a subnet.
v Not use broadcast or multicast pinging.
insert into pingHelper.configuration
(

m_NumThreads,
m_TimeOut,
m_NumRetries,
m_InterPingTime,
m_Broadcast,
m_Multicast

)
values
(

20, 250, 5, 50, 0, 0
);

62 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“Connectivity at the layer 3 network layer” on page 316
There are a number of discovery agents that retrieve connectivity information from
OSI model layer 3 (the Network Layer). Layer 3 is responsible for routing,
congestion control, and sending messages between networks.
“The Ping helper database” on page 249
The Ping helper database is defined by the DiscoPingHelperSchema.cfg
configuration file. Its fully qualified database table name is
pingHelper.configuration.

DiscoConfig.cfg configuration file
The DiscoConfig.cfg configuration file is used to have the Ping finder automatically
check the devices discovered by the File finder, and to enable a context-sensitive
discovery.

Database table used

The DiscoConfig.cfg configuration file can be used to configure inserts into the
following tables:
v disco.config
v disco.managedProcesses
v disco.NATStatus
v disco.ipCustomTags
v disco.filterCustomTags
v translations.NATAddressSpaceIds
v translations.collectorInfo
v failover.restartPhaseAction
v failover.config
v failover.doNotCache

The following examples illustrate inserts into the disco.config database table.

Sample: pinging File finder devices

The following example command configures the discovery so that the devices
discovered by the File finder are automatically checked by the Ping finder.
update disco.config set m_CheckFileFinderReturns = 1;

Sample: enabling a context-sensitive discovery

Attention: Enabling a context-sensitive discovery automatically enables all the
Context agents. Disabling a context-sensitive discovery automatically disables all
the Context agents. You should not manually enable or disable Context agents,
either through the configuration files or through the Discovery Configuration GUI.

To enable a context-sensitive discovery, append the following insert to the
DiscoConfig.cfg file:
insert into disco.config
(

m_UseContext
)

Chapter 2. Configuring network discovery 63

values
(

1
)

Inserting the value 0 disables the context-sensitive discovery.

Enriching topology using custom tags

You can use the disco.ipCustomTags and disco.filterCustomTags tables to enrich
the discovered topology by associating one or more name-value pair tags with
discovered entities.
Related concepts:
“Discovering device details (context-sensitive)” on page 288
The discovery of context-sensitive device details is carried out in several steps.
Related tasks:
“Adding tags to entities using custom tag tables” on page 173
You can add name-value pair tags to entities by creating inserts containing the
name-value pair data into the disco.ipCustomTags table or into the
disco.filterCustomTags table.
Related reference:
“Context-sensitive discovery agents” on page 329
There are several agents that take part in a context-sensitive discovery.
“disco.config table” on page 183
The config table configures the general operation of the discovery process.

DiscoScope.cfg configuration file
The DiscoScope.cfg configuration file can be used to configure the scope of a
discovery.

Database tables used

This configuration file can be used to configure inserts into the following database
tables:
v scope.zones
v scope.detectionFilter
v scope.instantiateFilter
v scope.special

Sample: defining an inclusion zone

The following example insert defines the 10.10.2.* subnet as an inclusion zone.

Restriction: Network Manager does not support the IPv4–mapped IPv6 format
and expects all IPv6 addresses to be in standard colon-separated IPv6 format. For
example, Network Manager does not support an IPv4–mapped IPv6 address such
as ::ffff:192.0.2.128. Instead enter this address as ::ffff:c000:280 (standard
colon-separated IPv6 format).
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values

64 IBM Tivoli Network Manager IP Edition: Discovery Guide

(
1,
1,
[

{
m_Subnet="10.10.2.*"

}
]

);

Sample: defining multiple inclusion zones

The following example defines three different IP inclusion zones each using a
different syntax to define the subnet mask. The following devices are discovered:
v Any device within the 172.16.1.0 subnet (with a subnet mask of 24, that is, 24

bits turned on and 8 bits turned off, which implies a netmask of 255.255.255.0).
v Any device within the 172.16.2.0 subnet with a mask of 255.255.255.0.
v Any device within the 172.16.3.0 subnet with a mask of 255.255.255.0.
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values
(

1,
1,
[

{
m_Subnet="172.16.1.0",
m_NetMask=24

},
{

m_Subnet="172.16.2.*"
},
{

m_Subnet="172.16.3.0",
m_NetMask=255.255.255.0

}
]

);

Sample: defining an exclusion zone

The following example insert defines a single exclusion zone for the IP protocol,
and associates the zone with a subnet.
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values
(

1,
2,
[

{
m_Subnet="172.16.1.0",
m_NetMask=24

]
);

Chapter 2. Configuring network discovery 65

Sample: defining an inclusion zone within a NAT domain

The following example defines one inclusion zone. The inclusion zone includes any
device with an IP address starting with 172.16.2 that also belongs to the NAT
address space NATDomain1. The protocol is set to 1, that is, IP.
insert into scope.zones
(

m_Protocol, m_Action, m_Zones, m_AddressSpace
)
values
(

1,
1,
[

{
m_Subnet="172.16.2.*",

}
],
"NATDomain1"

);

Sample: restricting device interrogation based on IP address

The following example shows how to prevent the further interrogation of devices
that match a given IP address. Only devices that do not have the IP address
10.10.63.234 are interrogated further.

There must be only one insert into the scope.detectionFilter table per protocol.
Multiple conditions must be defined within a single insert.

Within the scope.detectionFilter table, specify:
v The type of network protocol. Currently only IP is supported.
v The filter condition(s). Only devices that pass this filter, that is, for which the

filter evaluates true, are further investigated. If no filter is specified, all devices
are passed through the detection filter.

insert into scope.detectionFilter
(

m_Protocol, m_Filter
)
values
(

1,
"((m_UniqueAddress <> ’10.10.63.234’))"

);

A stitcher tests each discovered device against the filter condition in the
scope.detectionFilter table, and the outcome of this test determines whether the
device is discovered.

Because the process flow of the discovery is fully configurable, you can configure
this stitcher to act at any time during the discovery process. By default, the stitcher
performs the conditional test on the device details returned by the Details agent.
Your filter must therefore be based on the columns of the Details.returns table.

Although you can configure the filter condition to test any of the columns in the
Details.returns table, you might need to use the IP address as the basis for the filter
to restrict the detection of a particular device. If the device does not grant SNMP

66 IBM Tivoli Network Manager IP Edition: Discovery Guide

access to the Details agent, the Details agent might not retrieve MIB variables such
as the Object ID. However, you are guaranteed the return of at least the IP address
when the device is detected.

The following examples show how else you might configure the detection filter.

Sample: restricting interrogation based on Object ID

The following example shows how to prevent the further interrogation of devices
that match a given Object ID. The OQL not like clause indicates that only devices
that pass the filter (that is, devices for which the OID is not like 1.3.6.1.4.1.*) are
interrogated further.

The backslash must be used in the insert to escape the ., which would otherwise
be treated as a wildcard. A full explanation of the syntax of OQL can be found in
the IBM Tivoli Network Manager IP Edition Language Reference.
insert into scope.detectionFilter
(

m_Protocol,
m_Filter

)
values
(

1,
"(

(m_ObjectId not like ’1\.3\.6\.1\.4\.1\..*’)
)"

);

Sample: combining multiple filter restrictions

You can combine filter conditions within a single OQL insert. The following
example ensures that only devices that do not have the specified OID and do not
have the specified IP address are detected:
insert into scope.detectionFilter
(

m_Protocol,
m_Filter

)
values
(

1,
"(

(m_ObjectId not like ’1\.3\.6\.1\.4\.1\..*’)
AND
(m_UniqueAddress <> ’10.10.63.234’)

)"
);

Restricting instantiation: limitation when filtering out interfaces

Note the following limitation when you restrict instantiation of interfaces.

Restriction: To ensure that alerts are not raised for interfaces that are excluded by
the instantiation filter, you must set the RaiseAlertsForUnknownInterfaces variable.
To this, perform the following steps:
1. Edit the $NCHOME/etc/precision/NcPollerSchema.cfg configuration file.
2. Add the following line to the file:

update config.properties set RaiseAlertsForUnknownInterfaces = 1;

Chapter 2. Configuring network discovery 67

Sample: restricting instantiation based on the IP address

To restrict the devices that are instantiated, append an OQL insert into the
scope.instantiateFilter table. There must be only one insert into the
scope.instantiateFilter per protocol. The instantiateFilter table requires the
following information:
v The type of network protocol. Currently only IP is supported.
v The conditional test. Only devices that pass the filter are sent to MODEL. If no

filter is defined, all discovered devices are passed to MODEL.

The instantiateFilter works in the same way as the detectionFilter because a stitcher
is called to compare discovered devices using the test defined in the
scope.instantiateFilter table. By default, the test is performed after the Scratch
Topology has been generated, but before the records are sent to MODEL. The
conditional test must therefore be based on the columns of the
scratchTopology.entityByName table.

Attention: You must ensure that there is only one insert into the
scope.instantiateFilter table per protocol. Multiple filters must be combined within
a single insert in the same way as is done in the detectionFilter table.

The following example shows how to restrict the instantiation of devices based on
the IP address, by filtering against the m_Addresses column of the
scratchTopology.entityByName table.

The m_Addresses column is a list of the OSI model layer 1-7 addresses for the
device. The following example filter tests the value of m_Addresses(2), that is, the
third entry in the list of addresses (list numbering starts at 0). The third entry in
the list of addresses is the layer 3 address, that is, the IP address of the device.

The following insert ensures that only devices that pass the filter are instantiated,
that is, devices for which the IP address is not 172.16.1.231, and is not 172.16.5.47,
and does not begin 192.168.123.

You could also restrict instantiation based on other addresses for the device stored
in the scratchTopology.entityByName.m_Addresses column. For example,
m_Addresses(1) contains the layer 2 address of the device, that is, the MAC
address.
insert into scope.instantiateFilter
(

m_Protocol,
m_Filter

)
values
(

1,
"(

(Address(2) <> "172.16.1.231")
AND
(Address(2) <> "172.16.5.47")
AND
(Address(2) not like "192\.168\.123\..*")

)"
);

68 IBM Tivoli Network Manager IP Edition: Discovery Guide

Sample: restricting instantiation based on Object ID

This example shows how to prevent the instantiation of devices that match a given
Object ID. The OQL not like clause indicates that only devices that pass the filter
(that is, devices for which the OID is not like 1.3.6.1.4.1.*) are instantiated.
insert into scope.instantiateFilter
(

m_Protocol,
m_Filter

)
values
(

1, // The backslash is used here to escape the .
"(// which would otherwise be treated

// as a wildcard.
(EntityOID not like ’1\.3\.6\.1\.4\.1\..*’)

)"
);

Sample: complex instantiation restriction

You can configure a complex instantiation by combining conditions in the insert.

The following example shows a more complex insert, which combines a number of
conditions relating to different columns of the scratchTopology.entityByName table.
insert into scope.instantiateFilter
(

m_Protocol,
m_Filter

)
values
(

1,
"(

(Address(2) = ’10.82.219.1’)
OR
(Address(2) = ’10.82.213.5’)
OR
(Address(2) = ’10.82.213.6’)

)
OR
(

(EntityName LIKE ’Tivoli’)
AND
(EntityType < 3)

)
OR
(

(EntityType >= 3)
AND
(EntityType <> 7)

)"
);

The above insert ensures that only the following devices are sent to MODEL to be
instantiated:
v Any device with the IP address 10.82.219.1, 10.82.213.5 or 10.82.213.6
v Any device that is not a Web server whose name contains the string tivoli

(either lower-cased or capitalized) and for which EntityType < 3, that is, an
interface or a chassis

Chapter 2. Configuring network discovery 69

v Any device of EntityType equal to 3, 4, 5, 6 or 8, that is, a logical interface,
Virtual Local Area Network (VLAN) object, card, Power Supply Unit (PSU), or
module

Related reference:
“Discovery scope database” on page 201
The scope database limits the extent or reach of a discovery. Using the scope
database, you can configure a range of protocols and attributes that define zones
that are to be included or excluded from the discovery process.

Devices with out-of-scope interfaces:

A network might contain devices that are within the discovery scope but that
contain interfaces that are out of scope. Because the device is in scope, the default
behavior of the layer 3 discovery agents is to download the interface table of the
device and discover all the interfaces of a device, even if the interfaces themselves
are out of scope.

If this situation applies to your network, and you want to modify the way in
which the discovery process handles devices that are partially in scope, there are
several ways to modify the discovery and monitoring process to exclude these
interfaces from the discovery.

A possible configuration adjustment is to modify the insert into the
scope.instantiateFilter such that the out-of-scope interfaces are not instantiated.
This solution means that the out-of-scope interfaces are still discovered, but are not
passed to MODEL to be instantiated to an Active Object Class (AOC); therefore the
out-of-scope interfaces are not represented on the topology or monitored.

DiscoSnmpHelperSchema.cfg configuration file
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.

Database table used

The DiscoSnmpHelperSchema.cfg configuration file can be used to configure
inserts into the snmpHelper.configuration database table.

You can also configure the SNMP Helper to use the GetBulk operation when
SNMP v2 or v3 is used. Use of the GetBulk operation improves discovery speed.
For more information, see the IBM Tivoli Network Manager IP Edition Installation and
Configuration Guide.

Sample: Configuring timeouts and threads

The following example configuration causes the SNMP helper to behave as follows:
v 120 threads of program execution are started to process incoming requests for

SNMP data from the Helper Server. The SNMP helper processes a maximum of
120 such requests simultaneously.

v A three-second timeout period is specified for a device to respond to an SNMP
query issued by the SNMP helper. If the device has not responded after this
time, the helper issues the request again, one time.

insert into snmpHelper.configuration
(

m_NumThreads,
m_TimeOut,
m_NumRetries,

70 IBM Tivoli Network Manager IP Edition: Discovery Guide

)
values
(

120, 3000, 1
);

Related reference:
“Discovering connectivity among Ethernet switches” on page 311
Discovery agents that discover connectivity information between Ethernet switches
have three main operational stages: gain access to the switch and download all the
switch interfaces; discover VLAN information for the switch; download the
forward database table for the switch.
“Discovering connectivity among ATM devices” on page 321
Asynchronous Transfer Mode (ATM) is an alternative switching protocol for mixed
format data (such as pure data, voice, and video). Several types of discovery
agents can be used to discover ATM devices on a network.
“Discovering NAT gateways” on page 324
There are several agents that download Network Address Translation (NAT)
information from known NAT gateways.
“Discovering containment information” on page 325
An important principle used by the network model is containment. A container
holds other objects. You can put any object within a container and even mix
different objects within the same container.
“Discovery agents on other protocols” on page 327
Network Manager provides agents that discover devices that use other protocols
than ones previously described.
“Task-specific discovery agents” on page 330
There is a group of discovery agents that are task-specific.
“The SNMP helper database” on page 250
The SNMP helper database is defined by the DiscoSnmpHelperSchema.cfg
configuration file. Its fully qualified database table name is
snmpHelper.configuration.

DiscoTelnetHelperSchema.cfg configuration file
The DiscoTelnetHelperSchema.cfg configuration file defines the operation of the
Telnet helper, which returns the results of a Telnet operation into a specified
device.

Database tables used

The DiscoTelnetHelperSchema.cfg configuration file can be used to configure
inserts into the following database tables:
v telnetHelper.configuration
v telnetHelper.deviceConfig

You can configure the Telnet helper to use the Secure Shell (SSH) program. SSH
enables authentication and provides more secure communications over the
network.

Sample: configuring the Telnet helper

The following insert can be appended to the DiscoTelnetHelperSchema.cfg
configuration file to configure the operation of the Telnet helper. The insert
configures the Telnet helper to:
v Use 20 threads of process execution

Chapter 2. Configuring network discovery 71

v Wait a maximum of 5000 ms for a reply from a device
v Try the request up to three times
insert into telnetHelper.configuration
(

m_NumThreads,
m_TimeOut,
m_Retries

)
values
(

20,
5000,
3

);

Configuring device-specific settings

The Telnet helper also accepts multiple inserts into the telnetHelper.deviceConfig
table within the DiscoTelnetHelperSchema.cfg configuration file that define the
interaction of the Telnet operation.

The following examples show how to configure Telnet device-specific settings. You
can configure device settings based on the sysObjectID MIB variable or based on IP
or subnet. The most effective way to set these options is based on the sysObjectID
MIB variable. This variable identifies the device vendor. Device-specific
configuration options typically vary with the device vendor. You can configure
values for all Cisco devices, for example, regardless of where these devices are in
the network.

Sample: configuring settings for devices from a specific vendor

The following typical configuration shows how to configure settings for all devices
from a specific vendor. The insert specifies:
v 1.3.6.1.4.1.9.1. as the sysObjectID MIB variable to match for this configuration

entry. All devices with object IDs of the form 1.3.6.1.4.1.9.1.* are matched. In
general, these are Cisco IOS devices, although there are exceptions.

v terminal length is the command that sets the output page length for Cisco
devices.

Note: This command varies with devices of different vendor types.
v No paging
v Prompt from remote device
v The response to send to the remote device for it to continue paged output.
insert into telnetHelper.deviceConfig
(

m_SysObjectId,
m_PageLengthCmd,
m_PageLength,
m_ContinueMsg,
m_ContinueCmd

)
values
(

"1.3.6.1.4.1.9.1.", "terminal length", 0, ".*[Mm]ore.*", " "
);

The DiscoTelnetHelperSchema.cfg configuration file contains inserts with default
device-specific configuration settings for the following vendor types:

72 IBM Tivoli Network Manager IP Edition: Discovery Guide

v Cisco IOS devices
v Cisco Cat OS devices
v Juniper JUNOS devices
v Juniper ERX devices
v Huawei devices
v Dasan devices

Sample: configuring device response settings based on IP address

If the output of the telnet command is longer than one page, the device sends a
message asking whether to display the next page. Configure the messages to be
expected and the responses to be given by the Telnet helper in the
DiscoTelnetHelperSchema.cfg configuration file.

Commands beginning m_Continue (such as m_ContinueMsg) and m_PageLength
(such as m_PageLengthCmd) are mutually exclusive: you must use one or the
other. If these settings are not configured correctly for your devices, data might be
lost.

The following example shows how to configure settings for devices based on the
IP address. The insert specifies:
v 192.168.112.0 as the IP address
v The prompt from the remote device is a regular expression containing "wish to

continue"

v The response to send to the remote device for it to continue paged output is "y"
insert into telnetHelper.deviceConfig
(

m_IpOrSubNet,
m_NetMaskBits,
m_Protocol,
m_ContinueMsg,
m_ContinueCmd

)
values
(

192.168.112.0,
24,
1,
".*wish to continue.*",
"y"

);

Chapter 2. Configuring network discovery 73

Related reference:
“Advanced discovery parameters” on page 37
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.
“Discovering connectivity among Ethernet switches” on page 311
Discovery agents that discover connectivity information between Ethernet switches
have three main operational stages: gain access to the switch and download all the
switch interfaces; discover VLAN information for the switch; download the
forward database table for the switch.
“Discovering NAT gateways” on page 324
There are several agents that download Network Address Translation (NAT)
information from known NAT gateways.
“Context-sensitive discovery agents” on page 329
There are several agents that take part in a context-sensitive discovery.
“The Telnet helper database” on page 251
The Telnet helper database is defined by the DiscoTelnetHelperSchema.cfg
configuration file. Its fully qualified database table names are:
telnetHelper.configuration; telnetHelper.deviceConfig.

DiscoXmlRpcHelperSchema.cfg configuration file
The DiscoXmlRpcHelperSchema.cfg configuration file can be used to configure the
XML-RPC helper, which enables Network Manager to communicate with EMS
collectors using the XML-RPC interface.

Database table used

The DiscoXmlRpcHelperSchema.cfg configuration file can be used to configure
inserts into the xmlRpcHelper.configuration database table.

This example insert configures the XML-RPC helper to:
v Use one thread of process execution.
v Allow a maximum size of 1048576 bytes for an XML-RPC response.
insert into xmlRpcHelper.configuration
(

m_NumThreads,
m_MaxResponseSize

)
values
(

1, 1048576
);

Note: The default maximum response size might be too small when running a
Collector-based discovery against Collectors that result in very large responses. In
such cases, increase the maximum response size. To increase the maximum
response size, set the m_MaxResponseSize parameter to a higher value. Make sure
you set the same value for m_MaxResponseSize in both of the following files:
v NCHOME/etc/precision/DiscoCollectorFinderSchema.cfg

v NCHOME/etc/precision/DiscoXmlRpcHelperSchema.cfg

74 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“The XMLRPC helper database” on page 252
The XMLRPC helper database is defined by the DiscoXmlRpcHelperSchema.cfg
configuration file. Its fully qualified database table name is
xmlRpcHelper.configuration.

SnmpStackSecurityInfo.cfg configuration file
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.

Database tables used

This configuration file can be used to configure inserts into the following database
tables:
v snmpStack.configuration
v snmpStack.verSecurityTable
v snmpStack.accessParameters

Note that there is another configuration file associated with the snmpStack
database, the SnmpStackSchema.cfg file, but you should not need to alter this file.

You can also configure the SNMP Helper to use the GetBulk operation when
SNMP v2 or v3 is used. Use of the GetBulk operation improves discovery speed.
For more information, see the IBM Tivoli Network Manager IP Edition Installation and
Configuration Guide.

Sample: Configuring SNMP versions

If auto-versioning is turned on, the following configuration adjustment specifies
that a community string of ‘public' is used for devices that support SNMP version
1, and specific configuration is used for devices that support SNMP version 3.
Since no value has been specified for m_SnmpPort, this value defaults to the
standard SNMP 161 port.
insert into snmpStack.verSecurityTable
(

m_SNMPVersion,
m_Password,
m_SNMPVer3Level,
m_SNMPVer3Details,
m_SecurityName,

)
values
(

0,
’public’,
2,
{

m_AuthPswd="authpassword",
m_PrivPswd="privpassword"

},
’authPriv’

);

Chapter 2. Configuring network discovery 75

Sample: Defining community strings

The following inserts define the community strings public and crims0n for use to
access SNMP devices.

You can append as many inserts as there are passwords to the
SnmpStackSecurityInfo.cfg configuration file. All password and subnet
configurations are tried until a match is found.

Note: Only one SNMP community string, the public community string, is set up
by default.
insert into snmpStack.verSecurityTable
(

m_SNMPVersion,
m_Password,
m_SNMPVer3Level,
m_SNMPVer3Details,
m_SecurityName

)
values
(

0,
’public’,
2,
{

m_AuthPswd="authpassword",
m_PrivPswd="privpassword"

},
’authPriv’

);

insert into snmpStack.verSecurityTable
(m_IpOrSubNetVer,

m_NetMaskBitsVer,
m_SNMPVersion,
m_Password,
m_SNMPVer3Level,
m_SNMPVer3Details,
m_SecurityName

)
values
(

"10.10.2.0",
24,
0,
’crims0n’,
2,
{

m_AuthPswd="authpassword",
m_PrivPswd="privpassword"

},
’authPriv’

);

Sample: Specifying an SNMP port

This example configures the same SNMP settings as in the previous example on all
devices within the subnet 192.168.64.0 and specifies the SNMP port as 6161 on all
devices within this subnet.
insert into snmpStack.verSecurityTable
(

m_IpOrSubNetVer,
m_NetMaskBitsVer,

76 IBM Tivoli Network Manager IP Edition: Discovery Guide

m_SNMPVersion,
m_Password,
m_SNMPVer3Level,
m_SNMPVer3Details,
m_SecurityName,
m_SnmpPort,

)
values
(

192.168.64.0,
24,
0,
’public’,
2,
{

m_AuthPswd="authpassword",
m_PrivPswd="privpassword"

},
’authPriv’
6161

);

Related reference:
“Discovering connectivity among Ethernet switches” on page 311
Discovery agents that discover connectivity information between Ethernet switches
have three main operational stages: gain access to the switch and download all the
switch interfaces; discover VLAN information for the switch; download the
forward database table for the switch.
“Types of agents” on page 311
The agents supplied with Network Manager can be divided into categories
according to the type of data they retrieve or the technology they discover.
“Connectivity at the layer 3 network layer” on page 316
There are a number of discovery agents that retrieve connectivity information from
OSI model layer 3 (the Network Layer). Layer 3 is responsible for routing,
congestion control, and sending messages between networks.
“Discovering connectivity among ATM devices” on page 321
Asynchronous Transfer Mode (ATM) is an alternative switching protocol for mixed
format data (such as pure data, voice, and video). Several types of discovery
agents can be used to discover ATM devices on a network.
“Discovering NAT gateways” on page 324
There are several agents that download Network Address Translation (NAT)
information from known NAT gateways.
“Discovering containment information” on page 325
An important principle used by the network model is containment. A container
holds other objects. You can put any object within a container and even mix
different objects within the same container.
“Discovery agents on other protocols” on page 327
Network Manager provides agents that discover devices that use other protocols
than ones previously described.
“Task-specific discovery agents” on page 330
There is a group of discovery agents that are task-specific.
“snmpStack database” on page 211
The snmpStack database defines the operation of the SNMP helper.

Chapter 2. Configuring network discovery 77

TelnetStackPasswords.cfg configuration file
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.

You can use the TelnetStackPasswords.cfg configuration file to specify a Secure
Shell (SSH) connection when configuring Telnet device access. SSH enables
password encryption when performing Telnet access. SSH versions 1 and 2 are
supported (restrictions apply in FIPS mode).

Important: SSH within Network Manager IP Edition currently supports
password-based authentication or no authentication. It does not support RSA
signature authentication.

Database table used

The TelnetStackPasswords.cfg configuration file can be used to configure inserts
into the telnetStack.passwords database table.

Note that there is another configuration file associated with the telnetStack
database, the TelnetStackSchema.cfg file, but you should not need to alter this file.

Sample: Configuring Telnet access parameters for a subnet

The following example insert configures the Telnet access parameters for a subnet.
The insert specifies:
v A subnet address of 192.168.200.0 with a netmask of 25.
v The password and username to use to access the device.
v The password, login and console prompts to expect from the device.
v The devices on this subnet support SSH.
insert into telnetStack.passwords
(

m_IpOrSubNet,
m_NetMaskBits,
m_Password,
m_Username,
m_PwdPrompt,
m_LogPrompt,
m_ConPrompt,
m_SSHSupport

)
values
(

’192.168.200.0’,
25,
’3v3rt0n’,
’user’,
’.*assword:.*’,
’.*ogin.*’,
’.*onsole>.*’,
1

);

Sample: Configuring Telnet access parameters for a device

The following example insert shows how you can configure the access parameters
for a single IP address. The insert specifies:
v A single IP address of 172.16.1.21. The address is identified as a single address

by the fact that m_NetMaskBits=32.

78 IBM Tivoli Network Manager IP Edition: Discovery Guide

v The password and username to use to access the device.
v The password, login and console prompts to expect from the device.
v This device does not support SSH.
insert into telnetStack.passwords
(

m_IpOrSubNet,
m_NetMaskBits,
m_Password,
m_Username,
m_PwdPrompt,
m_LogPrompt,
m_ConPrompt,
m_SSHSupport

)
values
(

’172.16.1.21’,
32,
’’,
’’,
’.*assword.*’,
’.*sername.*’,
’.*Morr.*’,
0

);

Sample: Configuring Telnet device-access for a subnet

The following example insert configures the Telnet access parameters for a subnet.
The insert specifies:
v A subnet address of 192.168.200.0 with a netmask of 25.
v The password and username to use to access the device.
v The password, login and console prompts to expect from the device.
v The devices on this subnet support SSH.
insert into telnetStack.passwords
(

m_IpOrSubNet,
m_NetMaskBits,
m_Password,
m_Username,
m_PwdPrompt,
m_LogPrompt,
m_ConPrompt,
m_SSHSupport

)
values
(

’192.168.200.0’,
25,
’3v3rt0n’,
’user’,
’.*assword:.*’,
’.*ogin.*’,
’.*onsole>.*’,
1

);

Sample: Configuring Telnet device-access for a single IP address

The following example insert shows how you can configure the access parameters
for a single IP address. The insert specifies:

Chapter 2. Configuring network discovery 79

v A single IP address of 172.16.1.21. The address is identified as a single address
by the fact that m_NetMaskBits=32.

v The password and username to use to access the device.
v The password, login and console prompts to expect from the device.
v This device does not support SSH.
insert into telnetStack.passwords
(

m_IpOrSubNet,
m_NetMaskBits,
m_Password,
m_Username,
m_PwdPrompt,
m_LogPrompt,
m_ConPrompt,
m_SSHSupport

)
values
(

’172.16.1.21’,
32,
’’,
’’,
’.*assword.*’,
’.*sername.*’,
’.*Morr.*’,
0

);

Related reference:
“Discovering connectivity among Ethernet switches” on page 311
Discovery agents that discover connectivity information between Ethernet switches
have three main operational stages: gain access to the switch and download all the
switch interfaces; discover VLAN information for the switch; download the
forward database table for the switch.
“Types of agents” on page 311
The agents supplied with Network Manager can be divided into categories
according to the type of data they retrieve or the technology they discover.
“Connectivity at the layer 3 network layer” on page 316
There are a number of discovery agents that retrieve connectivity information from
OSI model layer 3 (the Network Layer). Layer 3 is responsible for routing,
congestion control, and sending messages between networks.
“Discovering NAT gateways” on page 324
There are several agents that download Network Address Translation (NAT)
information from known NAT gateways.
“Context-sensitive discovery agents” on page 329
There are several agents that take part in a context-sensitive discovery.
“telnetStack database” on page 215
The telnetStack database defines the Telnet access parameters for devices.

80 IBM Tivoli Network Manager IP Edition: Discovery Guide

Retrieving extra information
You can configure the discovery agents to retrieve extra information from devices
and store this information in the ExtraInfo column of the topology database.

To specify that extra information be retrieved by a given discovery agent, modify
the definition file of the agent ($NCHOME/precision/disco/agents/*.agnt). All
discovery agents have a definition file in the agents directory, regardless of
whether the agent is text-based or precompiled.

The changes that you must make to the agent definition are described in the
following topics.

Changing the agent type
You can change the agent type in the agent definition file.

At the start of the discovery agent definition file, one of the following types of
agent is identified:
v DiscoCompiledAgent{}: Denotes a compiled discovery agent (with a

corresponding shared library in the $NCHOME/precision/lib directory).
v DiscoDefinedAgent{}: Denotes a text-based discovery agent (with no

corresponding shared library).
v DiscoCombinedAgent{}: Denotes a discovery agent that is a combination of

text-based and precompiled, where extra processing (such as the retrieval of
extra information from devices) is defined in the discovery agent definition file.

To retrieve extra information from devices, the agent type must either be
DiscoDefinedAgent{} or DiscoCombinedAgent{}. Therefore, if you are modifying an
existing compiled agent to retrieve extra information, the first step is to change the
type of agent from DiscoCompiledAgent{} to DiscoCombinedAgent{}.

Mediation and processing layers
The retrieval of extra information from devices and the addition of the information
to the entity records is conducted in two layers: the mediation and processing
layers. In the mediation layer, the actual SNMP requests to retrieve the variables
are carried out. In the processing layer, the retrieved variables are added to the
appropriate entity records. There is also an optional filter on the mediation layer.

The following code segment is an overview of the structure of the mediation and
processing sections of the discovery agent definition file.
DiscoAgentMediationFilter

{
// Optional section containing filters for the mediation layer.

}

DiscoAgentMediationLayer
{

// Contains the SNMP Get and GetNext requests to be performed.
// In addition, an ICMP trace can be performed and SNMP access
// parameters can be retrieved in the mediation layer.

}

DiscoAgentProcessingLayer
{

// Adds the retrieved variables to the appropriate entity
// record(s).

}

Chapter 2. Configuring network discovery 81

The mediation layer
The mediation layer is where the SNMP and ICMP requests are performed.

In the following code, the DiscoSnmpGetResponse(); rule performs an SNMP Get
request, and the DiscoSnmpGetNextResponse(); rule performs an SNMP Get Next
request. You can include as many of each type of request as necessary.

You can also include the DiscoSnmpGetAccessParameters(); rule, which retrieves
the SNMP access details for the device, and the DiscoICMPGetTrace(); rule, which
retrieves all the IP addresses in the path to the device.
DiscoAgentMediationLayer

{
DiscoSnmpRequests

{
DiscoSnmpGetResponse(ARGUMENT, VARIABLE);
DiscoSnmpGetNextResponse(ARGUMENT, VARIABLE,);
DiscoSnmpGetAccessParameters(VARIABLE);

}
DiscoICMPRequests

{
DiscoICMPGetTrace(VARIABLE);

}
}

DiscoSnmpGetResponse();:

DiscoSnmpGetResponse(); performs an SNMP Get request. The simple form of this
rule takes two arguments, separated by a comma. The first argument is the key to
assign to the response. This key is used in the processing layer. The second
argument is the OID (Object ID) to retrieve from the device.

The following example retrieves sysUpTime, assigning the key m_SysUpTime to
the value that is returned.
DiscoSnmpGetResponse("m_SysUpTime", sysUpTime);

A more complex form of DiscoSnmpGetResponse(); takes a third argument, the
OID index. The following example retrieves ifDescr, assigns the key m_IfDescr to
the value returned, and uses the OID index 1.
DiscoSnmpGetResponse("m_IfDescr", ifDescr, "1");

DiscoSnmpGetNextResponse();:

DiscoSnmpGetNextResponse(); performs an SNMP GetNext request. This rule takes
the same arguments as DiscoSnmpGetResponse();.

The following example retrieves ipRouteIfIndex and assigns the key
m_IpRouteIfIndex to the value returned.
DiscoSnmpGetNextResponse("m_IpRouteIfIndex", ipRouteIfIndex);

82 IBM Tivoli Network Manager IP Edition: Discovery Guide

DiscoSnmpGetAccessParameters();:

DiscoSnmpGetAccessParameters(); retrieves the SNMP access parameters for the
device.

If you configure the discovery agent to retrieve the access parameters in the
mediation layer, you must also configure the agent to add the information to the
database record in the processing layer.
DiscoSnmpGetAccessParameters("m_AccessParam");

DiscoICMPGetTrace();:

DiscoICMPGetTrace(); retrieves the IP addresses in the path to the device.

If you configure the discovery agent to retrieve the path to the device in the
mediation layer, you must also configure the agent to add the information to the
database record in the processing layer.
DiscoICMPGetTrace("m_Trace");

Mediation layer filter
The mediation layer filter is an optional filter that restricts the SNMP requests for
extra information to specific devices. You can include a condition within the
DiscoMediationSnmpGetFilter{} section within the DiscoAgentMediationFilter{},
that only devices passing the filter are processed by the agent.

The following example ensures that only devices with an ipForwarding value of 1
are processed.
DiscoAgentMediationFilter

{
DiscoMediationSnmpGetFilter
{

"ipForwarding" = 1 ;
}

}

The processing layer
The processing layer is where the retrieved information is added to the entity
records. Both the DiscoAgentProcLayerAddTags{} and
DiscoAgentProcLayerAddLocalTags{} sections are optional. However, if both
sections are omitted, no extra information is stored in the database records.

The structure of the processing layer is shown below.
DiscoAgentProcessingLayer

{
DiscoAgentProcLayerAddTags

{
DiscoAddTagSnmpGet(KEY);
DiscoAddTagSnmpGetNext(KEY);
DiscoAddTagSnmpGetAccessParameters("m_AccessParam");
DiscoAddTagTrace("m_Trace");

}
DiscoAgentProcLayerAddLocalTags

{
DiscoAddTagSnmpGet(

TAG FROM KEY WHERE CONDITION);
DiscoAddTagSnmpGetNext(

TAG FROM KEY WHERE CONDITION);
}

}

Chapter 2. Configuring network discovery 83

DiscoAgentProcLayerAddTags{}:

Within the DiscoAgentProcLayerAddTags{} section, you can include as many
DiscoAddTagSnmpGet(); or DiscoAddTagSnmpGetNext(); rules as necessary. These
rules add the retrieved variable to the database record for the discovered entity.

Each rule within the DiscoAgentProcLayerAddTags{} section takes a single
argument, which is the key assigned to the retrieved variable in the mediation
layer. The following example adds the value of m_SysUpTime, retrieved in the
mediation layer, to the entity record.
DiscoAddTagSnmpGet("m_SysUpTime");

If you configured the discovery agent to retrieve either the SNMP access
parameters or the path to the device during the mediation layer, you must include
either the DiscoAddTagSnmpGetAccessParameters(); or the DiscoAddTagTrace();
rule in the DiscoAgentProcLayerAddTags{} section to ensure that the retrieved
information is added to the MODEL database.

DiscoAgentProcLayerAddLocalTags{}:

Within the DiscoAgentProcLayerAddLocalTags{} section, you can include as many
DiscoAddTagSnmpGet(); or DiscoAddTagSnmpGetNext(); rules as necessary. These
rules add the retrieved variable to the database record for a local neighbor.

The structure of the rules is:
DiscoAddTagSnmpGet(TAG FROM KEY WHERE CONDITION);
DiscoAddTagSnmpGetNext(TAG FROM KEY WHERE CONDITION);

The arguments that determine the local neighbor to which the tag is added are:
v TAG specifies the field name of the tag to be added.
v KEY indicates the key assigned to the value returned in the mediation layer.
v CONDITION indicates a condition that determines whether or not the tag is

added.

The following example adds a field called m_IfDescr to the local neighbor object
(using the value returned in the mediation layer that was assigned the key
m_IfDescr) where m_IfIndex=1.
DiscoAddTagSnmpGet("m_IfDescr" FROM "m_IfDescr"

WHERE ("m_IfIndex" = "1")
);

The following example adds a field called m_IfType to the local neighbor object
using the list of values returned by the GetNext request performed in the
mediation layer and assigned the key m_IfType. The WHERE clause indicates the
particular value required from the list of data. The value is retrieved by looking for
the entry where the value of the m_IfIndex field in the local neighbor object is
equal to SNMPINDEX(0), that is, the first value of the SNMP table entry.
DiscoAddTagSnmpGetNext("m_IfType" FROM "m_IfType"

WHERE ("m_IfIndex" = SNMPINDEX(0))
);

84 IBM Tivoli Network Manager IP Edition: Discovery Guide

Special case: adding information to the master.entityByNeighbor
table
You can configure a discovery agent to download MIB variables, and specify that
the variables populate the MODEL master.entityByNeighbor table.

If you configure a discovery agent to download any of the MIB variables listed in
Table 4 and add those variables to the entity under the corresponding names, then
they are used to populate the corresponding columns in the MODEL
master.entityByNeighbor table. These columns can only be populated for entities
that contain the RelatedTo field, that is, entities that are related to other entities.

Table 4. Variables used to populate the master.entityByNeighbor table

MIB
variable

Name under which variable must be configured to
be added to entity

Column to be
populated

ifSpeed m_IfSpeed Speed

ifRelType m_IfRelType RelType

ifProtocol m_IfProtocol Protocol

Administering traps
The SNMP trap multiplexer, the ncp_trapmux process, listens to a single port and
forwards all the traps it receives to a set of host/socket pairs.

The following topics describe how to administer traps.

About trap management
Trap management enables you to ensure that traps received from network devices
are forwarded to ports where they can be handled by Network Manager and other
network management systems.

In most networks, traps arrive on a single default port (usually port 162). This can
cause problems if you have Network Manager and another network management
system installed on the same server. Both of these systems might need to listen for
traps; however, only one process can bind to one port at a time.

The SNMP Trap Multiplexer is a Network Manager process that resolves this
problem: it listens to a single port and forwards all the traps it receives to a set of
host/socket pairs.

By default, the SNMP Trap Multiplexer listens for traps on port 162, but you can
change this by inserting an alternative port number into the trapMux.config
database table.

The ncp_trapmux process can also store trap events in a binary format file
(containing trap and timing information) that can be used to recreate the trap
events in the order they occurred at a later date. This is useful mainly for
debugging purposes.

Chapter 2. Configuring network discovery 85

Starting the SNMP trap multiplexer
Although it is good practice to ensure that the ncp_ctrl process is configured to
launch and manage the SNMP Trap Multiplexer, you can also start it manually.

To start the ncp_trapmux process, use the following command:
ncp_trapmux -domain DOMAIN_NAME

Forwarding traps
Using the SNMP Trap Multiplexer, you can forward traps to one or more servers.

To configure the SNMP Trap Multiplexer to forward traps to network management
systems running on host1 and host2:
1. Edit the schema file, $NCHOME/etc/precision/TrapMuxSchema.cfg, to contain a

set of host/socket pairs. For example, append the following lines to the file:
insert into trapmux.sinkHosts (host, port) values ("host1", 5999);
insert into trapmux.sinkHosts (host, port) values ("host2", 5999);

2. Start the SNMP Trap Multiplexer using the following commands:
ncp_trapmux -domain DOMAIN1
ncp_trapmux -domain DOMAIN2

In the above example, when a trap is sent to the server that is running the
ncp_trapmux process, it is forwarded to test-host1, port 5999 and test-host2, port
5999.

Starting trap capture:

You can start capturing traps by inserting commands into the SNMP Trap
Multiplexer database.

To instruct the SNMP Trap Multiplexer to start capturing traps:
1. Log into the TrapMux service using the OQL Service Provider or the

Management Database Access page.
2. Issue the following commands:

insert into trapMux.command
(command) values("capture_start");
go

Stopping trap capture:

You can stop capturing traps by inserting commands into the SNMP Trap
Multiplexer database.

To instruct the SNMP Trap Multiplexer to stop capturing traps:
1. Log into the TrapMux service using the OQL Service Provider or the

Management Database Access page.
2. Issue the following commands:

insert into trapMux.command
(command) values("capture_stop");
go

86 IBM Tivoli Network Manager IP Edition: Discovery Guide

Printing traps to a file:

You can print traps to a file by inserting commands into the SNMP Trap
Multiplexer database.

To instruct ncp_trapmux to print traps:
1. Log into the TrapMux service using the OQL Service Provider or the

Management Database Access page.
2. Issue the following commands:

insert into trapMux.command
(command, fileName) values("print", FILENAME);
go

Where FILENAME specifies the file to which the output is written. If the file is not
specified, $NCHOME/etc/precision/trapmux.out is used.

Replaying traps from a file:

If you have created a text-readable file for traps, you can use the ncp_trapmux
process to recreate the trap events in the order specified in this file.

The ncp_trapmux process can replay traps using a binary file or a human-readable
file, however, the ncp_trapmux process can only generate binary files.

To instruct ncp_trapmux to replay traps from a file:
1. Log into the TrapMux service using the OQL Service Provider or the

Management Database Access page.
2. Issue the following commands:

insert into trapMux.command
(command, fileName) values("replay", "trapmux.out");
go

SNMP trap multiplexer commands
You can issue commands to the SNMP trap multiplexer, the ncp_trapmux process,
to control its operation.

The commands used to control the ncp_trapmux process are described in the
following table:

Table 5. Commands used to control the ncp_trapmux process

Command Function and Default Filename

capture_start Begin logging traps to memory. The default filename is NULL (not
required).

capture_stop Stop logging traps to memory. The default filename is NULL (not
required).

capture_continue Continue logging traps to memory. The default filename is NULL
(not required).

capture_empty Clear memory of all currently logged traps. The default filename is
NULL (not required).

rehash Shut down the ncp_trapmux process and clear all memory. The
daemon then rereads the configuration file and starts up again.
The default filename is NULL (not required).

restart Set the daemon to normal mode. The default filename is NULL
(not required).

Chapter 2. Configuring network discovery 87

Table 5. Commands used to control the ncp_trapmux process (continued)

Command Function and Default Filename

replay Either read the traps in memory or read the raw trap packet
information in the specified file and replay the traps with a small
delay between each. The default filename is NULL (play from
memory).

replay timed Either read the traps in memory or read the raw trap packet
information in the specified file and replay the traps in the order
of the time they were received with the same delays between
traps. The default filename is NULL (play from memory).

print Print the current traps in memory in a non-readable format to the
specified file. Time information is encoded with the trap. The
default filename is $NCHOME/etc/precision/trapmux.out.

Configuring specialized discoveries
You can configure the system to perform more complex discoveries, such as MPLS
and NAT discovery.

Specialized discoveries include the following:

EMS discoveries
Collects topology data from Element Management Systems and integrates
this data into the discovered topology.

MPLS discoveries
Discovers layer 3 VPNs and enhanced layer 2 VPNs running across MPLS
core networks.

NAT discoveries
Discovers NAT gateway devices thereby enables you to retrieve data on
devices in private address spaces.

Configuring EMS discoveries
You can configure Network Manager to collect topology data from Element
Management Systems (EMS) and integrate this data into the discovered topology.

The following topics describe how to configure an EMS discovery.

For an overview of how Network Manager collects topology data from Element
Management Systems (EMSs) and integrates this data into the discovered topology,
see the IBM Tivoli Network Manager IP Edition Product Overview.
Related concepts:
“Discovery process with EMS integration” on page 295
Network Manager collects topology data from an EMS using collectors.

88 IBM Tivoli Network Manager IP Edition: Discovery Guide

About EMS integration
The Network Manager EMS integration enables Network Manager to collect
topology data from Element Management Systems.

Table 6 shows the steps involved in collecting topology data from EMS as part of a
discovery or partial discovery. After this data has been collected, Network Manager
stitches it together with the topology.

Table 6. Collecting topology data from EMS during discovery

Step Data Flow

1 Using the Collector finder, the discovery system queries the collector to obtain a
list of devices managed by the EMS. In the case of a partial discovery, the
discovery might query for a single device or subnet only.

2 The Collector queries the EMS for the list of devices.

3 The EMS responds with list of managed devices.

4 The Collector responds by providing the list of devices.

5 Using a number of specialized collector discovery agents at different times during
the discovery, the discovery system queries the collector for basic and detailed
information about each of the devices in the list. Detailed information requested
includes inventory information, layer 2 and layer 3 connection details, and VPN
information.

6 The Collector responds by providing basic and detailed information as this is
requested.

About collectors:

A collector is a software module that retrieves topology data from a data source,
such as an Element Management System (EMS) or a comma-separated value (CSV)
file, and makes this data available to the discovery process as a set of XML data.
Network Manager can then stitch this data into the discovered topology.

A collector translates the topology data from the format in which it is held in the
proprietary EMS into a standard XML structure that can be processed by Network
Manager. This means that a different collector must be developed for each different
EMS vendor and model. Network Manager ships with a collector that processes
data from an Alcatel 5620 SAM EMS. This collector is written in the Perl language.
Collectors may be written in any language. However, Network Manager ships with
Perl modules to support the development of Perl-based collectors.

Collectors can run on the same host as the Network Manager. Collectors can also
run on a separate host.

All interaction between Network Manager and the collectors is conducted using
XML, and this interaction occurs over an XML-RPC interface.
Related information:

Tivoli Field Guide: EMS Collector Developer Guide
Network Manager ships with an Alcatel 5620 SAM EMS collector that is ready for
immediate use.See the EMS Collector Developer Guide for information on how to
develop collectors for other Element Management Systems.

Chapter 2. Configuring network discovery 89

http://www-01.ibm.com/support/docview.wss?uid=swg27014787

Default collectors:

A number of collectors are supplied with Network Manager.

Alcatel5620SamSoap

Collector for the Alcatel 5620 SAM EMS. This collector uses the SOAP access
protocol to communicate with the EMS.

Alcatel5620SamSoapFindToFile

Collector for the Alcatel 5620 SAM EMS. This collector uses the SOAP access
protocol to communicate with the EMS. The collector retrieves the same data as the
Alcatel5620SamSoapFindToFile collector.

The collector stores the data from the EMS in XML files with the same name as the
objects queried. The collector transfers the XML files to the Network Manager
using FTP. You must configure the FTP connection details before running the
collector.

Alcatel5620SamCsv

Collector for the Alcatel 5620 SAM EMS. This collector retrieves EMS topology
data from a CSV dump of the Alcatel 5620 SAM EMS.

Alcatel5529IdmSoap

Collector for the Alcatel-Lucent 5529 Inventory Data Manager (IDM) EMS. The
collector retrieves containment information for devices managed by the EMS.

GenericCsv

Generic CSV-based collector.

Huawei U2000 iManager Collector

This collector discovers physical and logical network entities managed by a
Huawei iManager U2000 EMS. Physical network entities discovered include
shelves, cards, Ethernet ports, and DSL ports. Logical network entities discovered
are VLANs and LAGs.

Components of the EMS integration:

EMS integration is composed of several components that assist in the collection of
topology data.

The components of the EMS integration are described in Table 7.

Table 7. Components of EMS integration

Component Description

Collector finder

ncp_df_collector

The Collector finder reads the collector host seeds from
a seed table in the collectorFinder database. It then
queries the collectors specified in this table to get a list
of devices managed by the EMS associated with each
collector.

90 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 7. Components of EMS integration (continued)

Component Description

Collector agents Retrieves basic and detailed information about the
devices on the collector. Each agent makes use of the
Collector helper to retrieve this information.

CollectorDetails agent Retrieves basic information about the devices on the
collector, including sysObjectId, sysDescr, and naming
data.

CollectorInventory agent Retrieves local neighbor, entity and associated address
data for each of the devices on the collector.

CollectorLayer2 agent Retrieves layer 2 connectivity information for the
devices on the collector.

CollectorLayer3 agent Retrieves layer 3 connectivity information for the
devices on the collector.

CollectorVpn agent Retrieves layer 2 and layer 3 VPN data for the devices
on the collector.

Collector helper

ncp_dh_xmlrpc

Enables Network Manager to communicate with the
collectors using the XML-RPC interface.

Related reference:
“Topology data stored in an EMS” on page 320
There are several discovery agents that retrieve information about devices
managed by an EMS.

Configuring an EMS discovery
Configure an EMS discovery to collect topology data from Element Management
Systems and integrate this data into the discovered topology.

You configure an EMS discovery in the same way that you configure the discovery
of any other type of network. In addition to the standard discovery configuration
activities you must perform some EMS-specific discovery configuration activities.

To configure an EMS discovery, do the following activities in addition to standard
discovery configuration activities:
v Configure and start the EMS collectors
v Seed the EMS discovery by seeding the Collector finder
v Enable collector discovery agents

These EMS-specific discovery configuration activities are described in the following
topics.

Configuring collectors:

You can configure a collector to pass data requests and responses between
Network Manager and the associated EMS or other data source.

Configuring the collector depends on the type of data source:
v For EMS: specify the hostname, port, username and password of the EMS.
v For CSV file: specify details of the CSV files and how to parse them.

Chapter 2. Configuring network discovery 91

You must also instruct the collector which port to listen on for XML-RPC requests
from Network Manager. This is typically a one-time setup task required when a
new collector is added to your Network Manager installation.

To configure a collector:
1. Edit the collector configuration file. For example, to configure the collector for

the Alcatel 5620 SAM EMS, edit the file, Alcatel5620SamSoapCollector.cfg,
located in:
$NCHOME/precision/collectors/perlCollectors/Alcatel5620SamSoap/

2. Specify the port the collector must listen on for XML-RPC requests from
Network Manager.
This is also the port the collector uses to provide XML-RPC responses to
Network Manager. By default this is port 8081. To make this change, find and
make any changes to the General section of the configuration file, as shown in
the following example:
General =>
{

Debug => 0,
Listen => 8081

},

3. Specify the data source for this collector. This varies depending on the type of
data source that the collector is using:
v If this is a SOAP collector and the data source is an EMS, then specify the

hostname and port of the EMS, together with a username and password on
the EMS. To make this change, find and make any changes to the DataSource
section of the configuration file, as shown in the following example:
DataSource =>
{

Host => 192.168.1.2,
Port => 8080

Username => ’oss’,
Password => ’myPa55w0rd’

...

...

...
},

v If this is a CSV collector and the data source is a CSV file, specify the
filename of the CSV file. To make this change, find and make any changes to
the DataSource section of the configuration file, as shown in the following
example:
DataSource =>
{

CsvCfg => ’exampleCsv.cfg’,
...
...
...
},

4. Save the collector configuration file.

92 IBM Tivoli Network Manager IP Edition: Discovery Guide

Configuring the Alcatel5620SamSoap collector:

To use data from the Alcatel5620SamSoap collector in a network discovery, you
must configure the connection details between the EMS and Network Manager.

You can also configure additional information to be collected from the EMS. To
configure the Alcatel5620SamSoap collector, complete the following steps:
1. Edit the collector configuration file: NCHOME/precision/collectors/

perlCollectors/Alcatel5620SamSoap/Alcatel5620SamSoap
Collector.cfg

2. Specify the port the collector must listen on for XML-RPC requests from
Network Manager.
This port is also used by the collector to provide XML-RPC responses to
Network Manager. By default the port is 8081. Find and edit the General
section of the configuration file, as shown in the following example:
General =>
{

Debug => 0,
Listen => 8081

},

The port must match the port you have configured in the insert into the
collectorFinder.collectorRules table in the DiscoCollectorFinderSeeds.cfg file
when seeding the collector for a first discovery.

3. Edit the DataSource section of the configuration file. Specify the hostname and
port of the EMS, and the username and password to connect to the EMS, as
shown in the following example:
DataSource =>
{

Host => 192.168.1.2,
Port => 8080

Username => ’oss’,
Password => ’myPa55w0rd’

...

...

...
},

4. Optional: If you want to retrieve custom data from the EMS in addition to the
data retrieved by default, complete the following steps.
a. Create a configuration file in the collector directory, for example

NCHOME/precision/collectors/perlCollectors/Alcatel5620SamSoap/
extraInfo.cfg.

b. Edit the new file and specify the data to be retrieved, as in the following
example:

Device =>
{

extraFields => [{ srcField => ’version’, destField =>
’m_Version’, typeField => ’string’ }]

},

Where srcField is the name of the field in the SAM object, destField is the
name of the field to which the data will be mapped within the extraInfo
field, and typeField is an optional type descriptor.
The field you want to retrieve must be part of one of the objects already
retrieved by the collector. The objects queried by the collector are:
v netw.NetworkElement

Chapter 2. Configuring network discovery 93

v equipment.PhysicalPort
v lag.Interface
v equipment.MediaAdaptor
v equipment.PhysicalPort
v equipment.DaughterCard
v equipment.Equipment
v equipment.Shelf
v vpls.L2AccessInterface
v vll.L2AccessInterface
v l3fwd.ServiceSite
v vprn.L3AccessInterface
v netw.PhysicalLink
v lldp.RemotePeer.
Valid types are int and string.

c. Save and close the new configuration file.
d. Edit the CustomData section of the NCHOME/precision/collectors/

perlCollectors/Alcatel5620SamSoap/Alcatel5620SamSoap
Collector.cfg collector configuration file. Specify the name and location of
the configuration file that defines the extra information to be collected, as in
the following example:

CustomData =>
{
ExtraInfoCfg => ’extraInfo.cfg’

},

5. Save the collector configuration file.

Configuring the Alcatel5620SamSoapFindToFile collector:

To use data from the Alcatel5620SamSoapFindToFile collector in a network
discovery, you must configure the connection details between the EMS and
Network Manager, and the FTP details using which the XML files can be sent to
the Network Manager server.

You can also configure additional information to be collected from the EMS. To
configure the Alcatel5620SamSoapFindToFile collector, complete the following
steps:
1. Edit the collector configuration file: NCHOME/precision/collectors/

perlCollectors/Alcatel5620SamSoap
FindToFile/Alcatel5620SamSoap
FindToFileCollector.cfg

2. Specify the port the collector must listen on for XML-RPC requests from
Network Manager.
This port is also used by the collector to provide XML-RPC responses to
Network Manager. By default the port is 8081. Find and edit the General
section of the configuration file, as shown in the following example:
General =>
{

Debug => 0,
Listen => 8081

},

94 IBM Tivoli Network Manager IP Edition: Discovery Guide

The port must match the port you have configured in the insert into the
collectorFinder.collectorRules table in the DiscoCollectorFinderSeeds.cfg file
when seeding the collector for a first discovery.

3. Configure the following FTP parameters:

FtpUsername
The FTP username on the Network Manager server.

FtpPassword
The FTP password on the Network Manager server.

FtpHost
The IP address of the Network Manager server.

PasswordFtpDirectory
The directory on the Network Manager server where the files are to be
sent.

Tip: Copy these files to another location before the next discovery so
that they do not get overwritten.

4. Edit the DataSource section of the configuration file. Specify the hostname and
port of the EMS, and the username and password to connect to the EMS, as
shown in the following example:
DataSource =>
{

Host => 192.168.1.2,
Port => 8080

Username => ’oss’,
Password => ’myPa55w0rd’

...

...

...
},

5. Optional: If you want to retrieve custom data from the EMS in addition to the
data retrieved by default, complete the following steps.
a. Create a configuration file in the collector directory, for example

NCHOME/precision/collectors/perlCollectors/Alcatel5620SamSoap/
extraInfo.cfg.

b. Edit the new file and specify the data to be retrieved, as in the following
example:

Device =>
{

extraFields => [{ srcField => ’version’, destField =>
’m_Version’, typeField => ’string’ }]

},

Where srcField is the name of the field in the SAM object, destField is the
name of the field to which the data will be mapped within the extraInfo
field, and typeField is an optional type descriptor.
The field you want to retrieve must be part of one of the objects already
retrieved by the collector. The objects queried by the collector are:
v netw.NetworkElement
v equipment.PhysicalPort
v lag.Interface
v equipment.MediaAdaptor
v equipment.PhysicalPort
v equipment.DaughterCard

Chapter 2. Configuring network discovery 95

v equipment.Equipment
v equipment.Shelf
v vpls.L2AccessInterface
v vll.L2AccessInterface
v l3fwd.ServiceSite
v vprn.L3AccessInterface
v netw.PhysicalLink
v lldp.RemotePeer.
Valid types are int and string.

c. Save and close the new configuration file.
d. Edit the CustomData section of the NCHOME/precision/collectors/

perlCollectors/Alcatel5620SamSoap/Alcatel5620SamSoap
Collector.cfg collector configuration file. Specify the name and location of
the configuration file that defines the extra information to be collected, as in
the following example:

CustomData =>
{
ExtraInfoCfg => ’extraInfo.cfg’

},

6. Save the collector configuration file.

Configuring the Alcatel5620Csv collector:

To use data from the Alcatel5620Csv collector in a network discovery, you must
configure the connection details between the EMS and Network Manager.
1. Edit the collector configuration file: NCHOME/precision/collectors/

perlCollectors/Alcatel5620SamCsv/Alcatel5620SamCsv
Collector.cfg

2. Specify the port the collector must listen on for XML-RPC requests from
Network Manager.
This port is also used by the collector to provide XML-RPC responses to
Network Manager. By default the port is 8081. Find and edit the General
section of the configuration file, as shown in the following example:
General =>
{

Debug => 0,
Listen => 8081

},

The port must match the port you have configured in the insert into the
collectorFinder.collectorRules table in the DiscoCollectorFinderSeeds.cfg file
when seeding the collector for a first discovery.

3. Edit the DataSource section of the configuration file and specify the filename of
the CSV file, as shown in the following example:
DataSource =>
{

CsvCfg => ’exampleCsv.cfg’,
...
...
...
},

4. Save the collector configuration file.

96 IBM Tivoli Network Manager IP Edition: Discovery Guide

Configuring the HuaweiU2000Imanager collector:

To use data from the HuaweiU2000Imanager collector in a network discovery, you
must configure the connection details between the EMS and Network Manager.
1. Edit the collector configuration file: NCHOME/precision/collectors/

perlCollectors/HuaweiU2000iManagerTL1/HuaweiU2000iManagerTL1
Collector.cfg

2. Specify the port the collector must listen on for XML-RPC requests from
Network Manager.
This port is also used by the collector to provide XML-RPC responses to
Network Manager. By default the port is 8081. Find and edit the General
section of the configuration file, as shown in the following example:
General =>
{

Debug => 0,
Listen => 8081

},

The port must match the port you have configured in the insert into the
collectorFinder.collectorRules table in the DiscoCollectorFinderSeeds.cfg file
when seeding the collector for a first discovery.

3. Edit the DataSource section of the configuration file. Specify the hostname and
port of the EMS, and the username and password to connect to the EMS, as
shown in the following example:
DataSource =>
{

Host => 192.168.1.2,
Port => 8080

Username => ’oss’,
Password => ’myPa55w0rd’

GetEntities => 1

DataAcquisition =>
{

StoreONTs => 1,
}

...

...
,

Set GetEntities to 1 if you want to collect entity information from the collector.
Set StoreONTs to 1 if you want to retrieve ONT data.

4. Save the collector configuration file.

Configuring the Alcatel5529IdmSoap collector:

To use data from the Alcatel5529IdmSoap collector in a network discovery, you
must configure the connection details between the EMS and Network Manager.
1. Edit the collector configuration file: NCHOME/precision/collectors/

perlCollectors/Alcatel5529IdmSoap/Alcatel5529IdmSoap
Collector.cfg

2. Specify the port the collector must listen on for XML-RPC requests from
Network Manager.
This port is also used by the collector to provide XML-RPC responses to
Network Manager. By default the port is 8081. Find and edit the General
section of the configuration file, as shown in the following example:

Chapter 2. Configuring network discovery 97

General =>
{

Debug => 0,
Listen => 8081

},

The port must match the port you have configured in the insert into the
collectorFinder.collectorRules table in the DiscoCollectorFinderSeeds.cfg file
when seeding the collector for a first discovery.

3. Ensure that the Batchsize parameter is set to 500, unless otherwise advised by
IBM Support. This parameter controls the size of the SOAP/XML response.

4. Edit the DataSource section of the configuration file. Specify the hostname and
port of the EMS, the username and password to connect to the EMS, and other
options, as shown in the following example:
DataSource =>
{

Host => 192.168.1.2,
Port => 8080

Username => ’oss’,
Password => ’myPa55w0rd’

Domain => ’AMS’

GetEntities => 1

GetOnt => 0
,

In the above example:
v The domain of the AMS system on which the Inventory Data Manager is

running is AMS.
v Collection of entity information is enabled (GetEntities => 1).
v Collection of ONT information is disabled (GetOnt => 0)

5. Save the collector configuration file.

Configuring the GenericSVC collector:

To use data from the GenericSVC collector in a network discovery, you must
configure the connection details between the EMS and Network Manager.
1. Edit the collector configuration file: NCHOME/precision/collectors/

perlCollectors/GenericCsv/GenericCsv
Collector.cfg

2. Specify the port the collector must listen on for XML-RPC requests from
Network Manager.
This port is also used by the collector to provide XML-RPC responses to
Network Manager. By default the port is 8081. Find and edit the General
section of the configuration file, as shown in the following example:
General =>
{

Debug => 0,
Listen => 8081

},

The port must match the port you have configured in the insert into the
collectorFinder.collectorRules table in the DiscoCollectorFinderSeeds.cfg file
when seeding the collector for a first discovery.

3. Edit the DataSource section of the configuration file and specify the filename of
the CSV file, as shown in the following example:

98 IBM Tivoli Network Manager IP Edition: Discovery Guide

DataSource =>
{

CsvCfg => ’exampleCsv.cfg’,
...
...
...
},

4. Save the collector configuration file.

Starting collectors:

Before discovery starts, all the collectors must be running. You must start the
collectors or make sure the collectors are running before starting a discovery that
includes collectors.

You start a collector by going to the relevant collector directory and issuing a
command-line interface command. Issue the following command to start a collector
(note that the command is entered on one line; options are explained in the table
below):
ncp_perl collector_script -cfg COLLECTOR_CONFIG_FILE
[-csvcfg CSV_COLLECTOR_CONFIG_FILE] [-listen PRECISION_PORT]
[-debug DEBUG] [-logdir] [-nologdir DIRNAME]
[-help] [-version]

Table 8. Explanation of command-line options

Option Explanation

collector_script The name of the perl script that implements the
collector; for example, main.pl.

-cfg COLLECTOR_CONFIG_FILE Specifies the collector configuration file.

-csvcfg CSV_COLLECTOR_CONFIG_FILE Use this optional parameter to specify the name of a
CSV file to use as a data source. You can also
specify this parameter within the collector
configuration file.
Restriction: This parameter is valid only when the
data source is a CSV file.

-listen PRECISION_PORT An alternative method to specify the port on which
the collector must listen for requests from Network
Manager. Only specify a value here if no port value
has been specified in the SOAP-based collector
configuration file or in the CSV-based collector
configuration file.

-debug DEBUG The level of debugging output (1-4, where 4
represents the most detailed output).

-logdir DIRNAME Directs log messages for each process started by
CTRL to NCHOME/log/precision.

-nologdir DIRNAME Directs log messages for each process started by
CTRL to a separate file in the specified directory.

-help All Network Manager components have a special
-help option that displays the command line
options. The component is not started even if –help
is used in conjunction with other arguments.

-version All Network Manager components have a special
-version option that displays the version number of
the component. The component is not started even
if –version is used in conjunction with other
arguments.

Chapter 2. Configuring network discovery 99

Seeding an EMS discovery:

Seed the EMS discovery by seeding the Collector finder. This is typically a
one-time setup task required when a new collector is added to your installation.

To enable Network Manager to find the collectors, you must seed the Collector
finder. Seeding the Collector finder involves specifying for each collector:
v The hostname of the device on which the collector is running
v The port on that device on which the collector is listening

If a collector is running on the same host as Network Manager, then you need only
specify the port.

Note: If you are rediscovering a device using the Collector finder, then specify the
IP address of the device or subnet to rediscover using the Discovery Configuration
GUI.

You can seed the Collector finder to perform a discovery or to perform a partial
rediscovery of a single device or subnet. If you seed the Collector finder to
perform a partial rediscovery, then you can also specify a single device or subnet
retrieved by the collector.

You must seed the Collector finder with the host name of the device on which the
collector is running, and the port on that device on which the collector is listening.
If the collector is running on the same host as Network Manager, then you need to
specify only the port.

Seeding the Collector for a first discovery

You seed the Collector finder for a first discovery by appending an insert into the
collectorFinder.collectorRules table to the DiscoCollectorFinderSeeds.cfg
configuration file. The following insert seeds the Collector finder with a host name
of 172.16.25.1, and a port of 8082. This insert means that the collector is running on
a host with IP address 172.16.25.0, which is different to the host on which Network
Manager is running. The override number of retries for this collector is 5.
insert into collectorFinder.collectorRules
(

m_Host,
m_Port,
m_NumRetries

)
values
(

"172.16.25.1",
8082,
5

);

100 IBM Tivoli Network Manager IP Edition: Discovery Guide

Enabling collector discovery agents:

By default, the collector discovery agents are not enabled. You must enable these
agents if you are running a discovery that includes collector-based discovery.

To enable the collector agents:
1. In the Discovery Configuration GUI, select the Full Discovery Agents tab.
2. Select the following agents by checking the box next to the agent:

v CollectorDetails

v CollectorInventory

v CollectorLayer2

v CollectorLayer3

v CollectorVpn

Tip: You might need to scroll down the agent list to find these agents.
3. Click Save to save these configuration settings to the

DiscoAgents.DOMAIN_NAME.cfg schema file, where DOMAIN_NAME is the
name of the discovery domain, for example NCOMS.

Related tasks:
“Activating agents” on page 27
You must enable the appropriate agents for the discovery you want to perform.
You can specify agents for a full discovery or for a partial discovery.

Locations and files for EMS collectors:

Perl scripts and a plain-text configuration file for each of the default collectors are
held in a separate directory within the NCHOME/precision/collectors/
perlCollectors/ directory.

Experienced users can develop new collectors to enable Network Manager to
interact with other EMS. Configuration and executable files for each new collector
must be placed in an appropriately named directory within the
NCHOME/precision/collectors/perlCollectors/ directory.

The default collectors are listed in the following table.

Name Directory Configuration file

Alcatel5620SamSoap NCHOME/precision/collectors/
perlCollectors/Alcatel5620SamSoap/

Alcatel5620SamSoap
Collector.cfg

Alcatel5620SamSoapFindToFile NCHOME/precision/collectors/
perlCollectors/Alcatel5620SamSoap
FindToFile/

Alcatel5620SamSoap
FindToFileCollector.cfg

Alcatel5620SamCsv NCHOME/precision/collectors/
perlCollectors/Alcatel5620SamCsv/

Alcatel5620SamCsv
Collector.cfg

Alcatel5529IdmSoap NCHOME/precision/collectors/
perlCollectors/Alcatel5529IdmSoap/

Alcatel5529IdmSoap
Collector.cfg

GenericCsv NCHOME/precision/collectors/
perlCollectors/GenericCsv/

GenericCsv
Collector.cfg

Huawei U2000 iManager Collector NCHOME/precision/collectors/
perlCollectors/
HuaweiU2000iManagerTL1/

HuaweiU2000iManagerTL1
Collector.cfg

Chapter 2. Configuring network discovery 101

Configuring a context-sensitive discovery
If you have devices that you need to discover such as SMS devices, MPLS Edge
devices, or other devices with virtual routers, you must run a context-sensitive
discovery. Context-sensitive discovery ensures correct representation of virtual
routers. Always check that your particular device type is supported for discovery.

In a context-sensitive discovery, information about a device is passed from the
returns table of the Details agent to the despatch table of the relevant Context
agent.

The Context agents use the filters in the files with an extension of .agent to
determine which devices to process. This is true for all discovery agents. If the
device is not of a type which supports virtual routers, that is, does not need
context-sensitive processing, it is passed directly to the Associated Address agent.

Attention: Enabling a context-sensitive discovery automatically enables all the
Context agents. Disabling a context-sensitive discovery automatically disables all
the Context agents. Do not manually enable or disable Context agents, either
through the configuration files or through the Discovery Configuration GUI.

To enable a context-sensitive discovery, append the following insert to the
DiscoConfig.cfg file:
insert into disco.config
(

m_UseContext
)
values
(

1
)

Inserting the value 0 disables the context-sensitive discovery.
Related concepts:
“Discovering device details (context-sensitive)” on page 288
The discovery of context-sensitive device details is carried out in several steps.
Related reference:
“Context-sensitive discovery agents” on page 329
There are several agents that take part in a context-sensitive discovery.

Configuring MPLS discoveries
Configure an MPLS discovery to discover core MPLS networks and the VPNs that
use these core networks. Advanced MPLS discovery configuration provides extra
customization facilities.

102 IBM Tivoli Network Manager IP Edition: Discovery Guide

About MPLS discovery
Administrators within service providers who offer Multiprotocol Label Switching
(MPLS) VPN services can discover MPLS core networks and MPLS VPNs to enable
NOCs within the service provider to monitor the health of customer VPNs.

Network Manager supports the discovery of the following VPNs running across
MPLS core networks:
v Layer 3 VPNs
v Enhanced Layer 2 VPNs

For the enhanced Layer 2 VPNs, Network Manager discovers point-to-point
pseudowires linking two provider edge (PE) routers.

The following sections specify the terminology and topology visualization
conventions used in Network Manager to refer to MPLS networks.

Note: The graphics shown in this section are conceptual representations of an
MPLS network only. You cannot see these conceptual views in the Network Views
graphical user interface (GUI).

Layer 3 MPLS VPNs:

Network Manager can visualize layer 3 MPLS VPN topologies in a core view or an
edge view.

The core view and edge view differ as follows:
v The core view shows the provider-edge (PE) routers, and provides visibility of

the provider core (P) routers and label switched path (LSP) data within the
MPLS core, for each of the VPNs running across the MPLS core.

v The edge view shows the PE routers and the MPLS cloud only. It does not
provide visibility of the devices in the core.

Enhanced Layer 2 MPLS VPNs:

For enhanced Layer 2 VPNs, Network Manager provides only an edge view of
your MPLS core network.

Network Manager displays an enhanced Layer 2 VPN as a collection of
point-to-point pseudowires. This means that if an enhanced Layer 2 VPN contains
more than two provider edge (PE) routers, then Network Manager displays that
VPN in multiple views, each view consisting of a single PE to PE point-to-point
connection.

Table 9 shows examples of enhanced Layer 2 VPNs with two and more than two
PEs. The table also provides the number of pseudowires, and hence the number of
views that Network Manager displays for each VPN.

Table 9. Number of pseudowires for an enhanced Layer 2 VPN

Number of PEs in an
Enhanced Layer 2 VPN

Number of point-to-point
pseudowires

Number of Views Network
Manager displays for this
VPN

2 1 1

3 3 3

4 6 6

Chapter 2. Configuring network discovery 103

Standard and advanced MPLS discovery configuration:

Configure a standard MPLS discovery to discover all of your MPLS network and
uses default naming convention for the VPNs discovered. The standard MPLS
discovery configuration also enables the display of service-affected events (SAEs)
in the Active Event List (AEL). Advanced MPLS discovery configuration provides
extra customization facilities.

Configuration activities for an MPLS network include seeding, scoping, and the
other standard discovery activities.

Standard and advanced MPLS discovery configuration differ as follows:
v Standard MPLS discovery: discovers all of your MPLS network and uses default

naming convention for the VPNs discovered
v Advanced MPLS discovery: using the advanced configuration options you can:

– Restrict the scope of the discovery to a particular VPN or VRF
– Configure your own VPN naming conventions
– Force label discovery even if you selected an RT-based discovery

After you have configured and run an MPLS discovery, your operators can
monitor customer VPNs in the following ways:
v View topology maps of selected VPNs, showing the alert status of the VPNs and

of the devices in the VPNs .
v Identify service-affected events (SAEs) in the Active Event List (AEL). An SAE is

an alert that warns operators that a critical customer service, for example, a
customer VPN, has been affected by one or more network events. The
underlying network events are on an interface on either a PE router or a CE
router.

About Service Affected Events:

A Service Affected Event (SAE) alert warns operators that a critical customer
service has been affected by one or more network events.

An SAE is produced when one or more events occur on a Provider Edge (PE) or
Customer Edge (CE) interface in a Virtual Private Network (VPN) or Virtual
Private LAN Service (VPLS). The underlying network events are on an interface of
a PE router or a CE router, or on the link between them. You must configure the
MPLS discovery to infer the existence of CE routers so all possible SAEs are
generated for your customer VPNs.

The following list gives two examples of SAE events generated on two different
customer VPNs:
v SAE generated on customer-1 VPN because of an Mpls VRF Down trap on a PE

router interface
v SAE generated on customer-3 VPN because of a LinkDown trap on a CE router

interface

Each SAE appears as an alert in the Active Event List (AEL). The appearance of the
SAE warns operators that a customer VPN has been affected, possibly critically, by
one or more network events. Operators can right-click the SAE and issue a
command to view the underlying events that caused the SAE.

104 IBM Tivoli Network Manager IP Edition: Discovery Guide

For more information about the AEL, see the IBM Tivoli Netcool/OMNIbus Web GUI
Administration and User's Guide.

Configuring standard MPLS discovery
Configure an MPLS discovery to discover core MPLS networks and the VPNs that
use these core networks.

In addition to the standard discovery configuration activities, you must perform
some MPLS-specific discovery configuration activities:
v Configure MPLS agents
v Specify the discovery methods, that is, whether to run a route-target or

label-switched path (LSP) discovery
v Configure SNP and Telnet to ensure that the agents can access network devices
v Configure Network Manager to infer the existence of CE routers. This step is

necessary to enable operators to view service-affected events in the Active Event
List (AEL).

These EMS-specific discovery configuration activities are described in the following
topics.

Configuring MPLS agents:

As part of MPLS discovery configuration you must enable one or more MPLS
agents. You can also resolve the problem of duplicate IP addresses in different
Virtual Private Networks (VPNs) by configuring the AsAgent agent.

The following MPLS agents and the corresponding agent definition (.agnt) files are
provided:
v Juniper Telnet agent (JuniperMPLSTelnet.agnt)
v Juniper ERX router agent (UnisphereMPLSTelnet.agnt)
v Cisco MPLS Telnet agent (CiscoMPLSTelnet.agnt)
v Cisco MPLS SNMP agent (CiscoMPLSSnmp.agnt)
v Laurel MPLS Telnet agent (LaurelMPLSTelnet.agnt)

Note: The Laurel MPLS Telnet agent is intended for RT- (RouteTarget) based
discoveries only.

These agents can discover MPLS VPN and Virtual Private LAN Service (VPLS)
data from devices in the network.

Tip: Agents that retrieve VPLS information can retrieve large amounts of data.
Enabling these agents can add significant processing time to the discovery process.
If you do not need to rediscover VPLS information, disable these agents for a faster
discovery.

Note: If you have an MPLS network that supports both Layer 3 and enhanced
Layer 2 VPNs, then the same MPLS agents discover both types of VPN. Network
Views can also partition both Layer 3 and enhanced Layer 2 VPNs simultaneously
on the same core MPLS network.

If your MPLS network contains Cisco equipment, enable both the Cisco MPLS
Telnet and Cisco MPLS SNMP agents. These two agents complement each other, as
follows:

Chapter 2. Configuring network discovery 105

v Cisco MPLS SNMP agent targets only devices with an Internetwork Operating
System (IOS) that fully supports SNMP-based MPLS discovery

v CiscoMPLSTelnet agent targets only devices running an IOS that does not fully
support an SNMP-based discovery

Attention: Use caution when altering the CiscMPLSSnmp.agnt file. Some network
devices might contain IOS versions that have a flaw that might affect the device
when certain MPLS SNMP data is requested. These IOS versions have been filtered
out by default in the CiscMPLSSnmp.agnt file.

In addition to these standard discovery configuration activities, you can also
change the scope of the MPLS discovery by restricting the scope to specific VPNs
or VRFs.
Related tasks:
“Defining the scope of an MPLS/VPN discovery” on page 113
When configuring the discovery of one or more Virtual Private Networks (VPNs)
running across an MPLS core, you can restrict the scope of this discovery to a
particular VPN name or VPN Routing and Forwarding (VRF) table name.

Configuring MPLS Telnet agents:

The CiscoMPLSTelnet, JuniperMPLSTelnet, LaurelMPLSTelnet, and
UnisphereMPLSTelnet agents obtain data from devices primarily through Telnet.
You must enable these agents and configure Telnet access to ensure that MPLS
Telnet agents can access devices and can understand the output from devices.

Do the following to configure Telnet access for MPLS Telnet agents:
1. Populate the Telnet configuration file TelnetStackPasswords.cfg so the agents

can access the target devices.
2. Configure the Telnet Helper so that agents can understand the output from

devices.
Related tasks:
“Configuring device access” on page 23
Specify SNMP community strings and Telnet access information to enable helpers
and Network Manager polling to access devices on your network.
Related reference:
“TelnetStackPasswords.cfg configuration file” on page 78
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.

Configuring MPLS SNMP agents:

The CiscoMPLSSnmp agent obtains data from devices using SNMP. You must
enable this agent and configure SNMP access to ensure that this agent can access
devices and can understand the output from devices.

To configure SNMP access for MPLS SNMP agents:

Note: The CiscoMPLSSnmp.agnt attempts to retrieve the L2 VPNs using the telnet
'show' commands if the agent fails to retrieve the data via SNMP.
1. Configure SNMP access to devices.
2. Configure the SNMP Helper so that agents can understand the output from

devices.

106 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related tasks:
“Configuring device access” on page 23
Specify SNMP community strings and Telnet access information to enable helpers
and Network Manager polling to access devices on your network.
Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.

Configuring the AsAgent agent:

To resolve the problem of duplicate IP addresses in different VPNs, activate the
AsAgent agent and provide Network Manager with a mapping file, ASMap.txt, that
contains a complete list of devices in each VPN, together with an AddressSpace tag,
which defines which VPN the device belongs to.

During an MPLS discovery, Network Manager might discover devices in different
VPNs with identical IP addresses. In this case, Network Manager cannot
differentiate between these devices and might resolve device connectivity
incorrectly. The devices in question might be the CE routers at the edge of the
VPNs, or might be devices within the VPNs.

In the ASMap.txt mapping file, provide a complete list of devices in each VPN,
together with an AddressSpace tag, which defines which VPN the device belongs
to.

Table 10 provides a description of the AsAgent agent that you need to activate to
resolve the problem of duplicate IP addresses.

Table 10. AsAgent agent

Agent name Function

AsAgent Enables Network Manager to uniquely identify devices in different
VPNs with identical IP addresses, and thereby correctly resolve device
connectivity. This agent works in conjunction with the
ASRetprocessing.stch stitcher and with the ASMap.txt file in
NCHOME/precision/etc.

Table 11 provides the format of the ASMap.txt file by showing an example of the
content of this file. Fields in this text file must be separated by tabs.

Table 11. Format of ASMap.txt file

Base Name Address Space IP Address

CERouter-1 CUSTOMER-1 192.168.2.1

CEDevice-a CUSTOMER-1 192.168.2.21

CEDevice-b CUSTOMER-1 192.168.2.22

CEDevice-c CUSTOMER-1 192.168.2.23

CERouter-2 CUSTOMER-2 192.168.2.1

CEDevice-a CUSTOMER-2 192.168.2.31

CEDevice-b CUSTOMER-2 192.168.2.32

Chapter 2. Configuring network discovery 107

Configuring MPLS discovery method:

You can configure MPLS discovery in either of two ways: Route Target (RT)-based
discovery; Label Switched Path (LSP)-based discovery.

The methods to configure MPLS discovery are:
v Route Target (RT)-based discovery: Network Manager uses VRF and RT

information to determine which provider edge routers are involved in a VPN.
v Label Switched Path (LSP)-based discovery: Network Manager uses VRF and

LSP information to determine which provider edge (PE) routers are involved in
a VPN and which provider core (P) routers are traversed by the LSPs within that
VPN.

Choose which MPLS discovery method to use by setting the Enable RT Based
MPLS VPN Discovery check box in the Discovery Configuration GUI.
v Check the Enable RT Based MPLS VPN Discovery check box to enable

RT-based MPLS discovery.
v Clear the Enable RT Based MPLS VPN Discovery check box to enable

LSP-based MPLS discovery.

You can also perform this configuration manually by setting the value of the field
m_RTBasedVPNs in the disco.config table.

Note: RT-based discoveries are based on a more later technology than LSP-based
discoveries, and can improve discovery performance. To avoid performance
problems with LSP-based MPLS/VPN discoveries, use the default RT-based option.
The RT-based option is the default option set on the Advanced tab of the Network
Discovery Configuration page. You can use VRF names with the RT-based option
by editing the configuration file as described in “Using VRF names with RT-based
discoveries” on page 109.

Table 12 summarizes the differences between RT-based discovery and LSP-based
discovery.

Table 12. RT-based discovery and LSP-based discovery

Type of Discovery Label Data Core View VPN Resolution

RT-based discovery No label data is
required for this type
of discovery

Discovery is faster

Consists of all
MPLS-enabled
devices

VPNs resolved based
on RT information

LSP-based discovery Label data is
discovered in order
to trace LSPs

Discovery is slower

Consists of devices
traversed by the
relevant LSPs

VPNs resolved based
on VRF and label
path information

108 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“Advanced discovery parameters” on page 37
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.
“disco.config table” on page 183
The config table configures the general operation of the discovery process.

Using VRF names with RT-based discoveries:

You might prefer the LSP-based discoveries in order to use the more familiar VRF
name for the VPNs. However, you can also use VRF names with the RT-based
discoveries.

To use VRF names with RT-based discoveries:
1. Exit all instances of the Discovery Configuration GUI.
2. Go to the NCHOME/etc/precision directory.
3. Edit the DiscoConfig.DomainName.cfg file as follows:

a. Set the m_RTVPNResolution field to 2 in the disco.config table.
b. Ensure that the m_RTBasedVPNs value is set to 1.

4. Restart the ncp processes to read the configuration files again:
itnm_stop ncp
itnm_start ncp

Alternatively, restart the ncp_config process.

Inferring the existence of CE routers:

You can infer the existence of your customers’ CE routers by making specifications
in the advanced discovery configuration options within the Discovery
Configuration GUI.

If the host on which Network Manager is installed has no access to your
customers’ CE routers, then Network Manager cannot discover these routers
directly. This situation typically occurs when the company providing MPLS
services owns the PE routers but has no access to CE routers, which are owned by
the customers running the VPNs.

Note: This situation does not occur if the company providing MPLS services owns
and manages both PE and CE routers and therefore has access to both sets of
devices.

To infer the existence of your customers’ CE routers, specify this in the advanced
discovery configuration options within the Discovery Configuration GUI.

Note: You should do this only where the PE interface is on a /30 subnet. In this
case, the other device on the subnet must be the CE router, and the IP address of
the CE will be the other address on the /30 subnet.

Limitations on inferring CE routers:

v Avoid inferring the existence of CE routers if your PE routers are connected to
the CE routers by serial links and you know that there is IP address duplication
among the CE routers and devices within the MPLS core network. Network

Chapter 2. Configuring network discovery 109

Manager will remove from the topology any discovered MPLS core routers that
have the same IP address as an inferred CE IP address.

v If your PE routers are connected to the CE routers by Ethernet, you can infer the
existence of CE routers without needing to perform any other checks. In this
case, Network Manager can determine the MAC address of the CE router. If
Network Manager has discovered another device with the same MAC address,
then it must be the CE router. In this case, Network Manager uses the
discovered device data and does not infer the existence of the CE.

Related reference:
“Advanced discovery parameters” on page 37
Advanced settings control features of the discovery such as concurrent processes
and timeouts. Use these parameters to increase the speed of the discovery, but
balance the speed with the load on the server. Generally, a faster discovery results
in more memory usage on the server.

Configuring advanced MPLS discovery
Configure an advanced MPLS discovery for extra customization facilities not
included in the standard MPLS discovery.

When you configure an advanced MPLS discovery, you must perform the
following activities in addition to the activities required for a standard MPLS
discovery.
v Define the scope of the MPLS discovery: enables you to restrict the scope of this

discovery to a particular VPN or VRF.
v Specify a VPN name: enables you to configure your own VPN naming

convention
v Fine-tune label data discovery: enables you to force LSP discovery regardless of

the MPLS discovery method selected

Configuring discovery of MPLS Traffic Engineered tunnels:

To discover MPLS Traffic Engineered tunnels, enable the StandardMPLSTE agent,
configure the information that is retrieved, and configure the scope of the
discovery.

MPLS Traffic Engineered tunnel discovery modes:

Set the discovery mode according to how much detail you want to retrieve.

A mode-switch is provided in the discovery agent configuration file that configures
specific tunnel instances, which can be wildcarded, to retrieve different amounts of
tunnel data. You can choose any of the following modes.

HeadEndHops (default)

In HeadEndHops mode, the agent retrieves head-end and tail-end of the
tunnel, and the transit LSRs and next-hop interfaces are identified by
querying the head-end LSR for computed and actual-route hop data. The
actual and computed route data is retrieved from the
mplsTunnelARHopTable and mplsTunnelCHopTable MIB tables
respectively. This discovery mode does not store transit and tail-end tunnel
instances against transit and tail-end LSRs. A connection is created in the
MPLS TE topology between the head-end and tail-end LSR interfaces via
transit device hops (if present) which are associated with the head-end LSR
tunnel object for the appropriate tunnel interface.

110 IBM Tivoli Network Manager IP Edition: Discovery Guide

MPLS cross-connect pointers that are discovered and resolved on the head
tunnel will be resolved to the appropriate LSP ID where possible.

You can use this information to determine if the actual path taken by a
tunnel is different to the path computed by the Compute Shortest Path
First (CSPF) calculations. You can see the computed and actual path,
although there is no way to determine that an LSR is acting in a transit or
tail capacity without looking at the head-end LSR tunnel data.

Note: Actual route data is only available if the Record Route Option (RRO)
has been specified for the tunnel instance.

In the schema of the scope.mplsTe table, the HeadEndHops mode maps to
value 1 of m_Mode.

HeadTailEnd

In HeadTailEnd mode, only MPLS TE tunnel head-end and tail-end points
are resolved, by querying the head-end Label Switching Router (LSR). This
mode provides the minimal amount of information about the MPLS TE
tunnels. A connection in the MPLS TE topology is created between the
head-end and tail-end LSR interfaces. A tunnel resource instance is
associated with the head-end tunnel LSR entity.

In this mode, you cannot identify the transit LSRs, and computed and
actual route data is not retrieved.

MPLS cross-connect pointers that are discovered and resolved on the head
tunnel will be resolved to the appropriate LSP ID where possible.

In the schema of the scope.mplsTe table, the HeadTailEnd mode maps to
value 2 of m_Mode.

AllLSRTunnelsAndHops

In AllLSRTunnelsAndHops mode, the agent retrieves the head-end and
tail-end of the tunnel and identifies transit LSRs and next-hop interfaces by
querying the head-end LSR for computed and actual route hop data. The
actual and computed route data is retrieved from the
mplsTunnelARHopTable and mplsTunnelCHopTable MIB tables
respectively. This discovery mode stores transit and tail-end tunnel
instances against transit and tail-end LSRs. The mode creates a connection
in the MPLS TE topology between the head-end and tail-end LSR
interfaces that are associated with the head-end (for the tunnel interface)
and transit and tail-end LSR tunnel objects. Computed and actual-route
connections are associated with Computed and Actual connection entity
types, which are aggregated in sequence from the head-end LSR tunnel
entity. A tunnel resource instance is associated with the head-end tunnel
LSR entity.

You can use this information to determine if the actual path taken by a
tunnel is different to the path computed by the CSPF calculations. You can
see the computed and actual path and determine the transit or tail-end role
of an LSR without looking at the headend LSR tunnel instance.

Note: Actual route data is only available if the Record Route Option (RRO)
has been specified for the tunnel instance.

MPLS cross-connect pointers that are discovered and resolved on the head
tunnel will be resolved to the appropriate LSP ID where possible.

Chapter 2. Configuring network discovery 111

In the schema of the scope.mplsTe table, the AllLSRTunnelsAndHops mode
maps to value 3 of m_Mode.

Related reference:
“mplsTe table” on page 203
The mplsTe table defines the scope of MPLS Traffic Engineered (TE) tunnel
discovery, and defines what information is retrieved.

Enabling the StandardMPLSTE agent:

To discover MPLS TE tunnels, you must enable the StandardMPLSTE agent and
add the relevant SNMP community strings.

To enable the StandardMPLSTE agent, complete the following steps.
1. Click Discovery > Network Discovery Configuration. From the Domain list,

select the required domain.
2. Click the Full Discovery Agents tab. The Agents List is displayed, showing all

available discovery agents for the selected discovery option.
3. Select the check box next to the StandardMPLSTE agent.

4. Click Save .
5. Optional: If you want to rediscover MPLS TE tunnels, enable the

StandardMPLSTE agent for partial rediscoveries.
a. Click the Partial Rediscovery Agents tab.
b. Select the check box next to the StandardMPLSTE agent.

c. Click Save .
6. Ensure that the SNMP community strings are configured correctly to access the

devices in the MPLS TE tunnels.
Related tasks:
“Configuring device access” on page 23
Specify SNMP community strings and Telnet access information to enable helpers
and Network Manager polling to access devices on your network.

Configuring the StandardMPLSTE agent:

Configure which tunnels to discover, and what details to retrieve.

To configure the StandardMPLSTE agent, complete the following steps.
1. Back up and edit the file NCHOME/etc/precision/DiscoScope.cfg.
2. Locate and edit the insert into the scope.mplsTe table, or create a new insert.

Create or edit an insert similar to the following:
insert into scope.mplsTe
(

m_Protocol,
m_Zones,
m_Mode,
m_TunnelFilter

)
values
(

1,

112 IBM Tivoli Network Manager IP Edition: Discovery Guide

[{m_Subnet = ’192.168.1.0’, m_NetMask = 24 }],
2,
1

);

This insert configures the agent to behave in the following way:
v It uses IPv4.
v It includes (m_Tunnelfilter=1) the subnet 192.168.1.* in the discovery of

tunnel heads.
v It retrieves data for the head and tail of the tunnel but not for the transit

routers.
3. Save and close the file.
4. Stop and restart the discovery engine, the ncp_disco process, for your

configuration changes to take effect.
Related reference:
“mplsTe table” on page 203
The mplsTe table defines the scope of MPLS Traffic Engineered (TE) tunnel
discovery, and defines what information is retrieved.

Defining the scope of an MPLS/VPN discovery:

When configuring the discovery of one or more Virtual Private Networks (VPNs)
running across an MPLS core, you can restrict the scope of this discovery to a
particular VPN name or VPN Routing and Forwarding (VRF) table name.

You restrict the scope by configuring the optional DiscoAgentDiscoveryScoping
section in the *.agnt file. The configurable options are described in Table 13.

Table 13. Defining MPLS scoping requirements

Option Function

IncludeVRF Allows the discovery of the named VRF

IncludeVPN Allows the discovery of the named VPN

ExcludeVPN Does not discover any VRFs within the named VPN

ExcludeVRF Does not discover the specified VRF

The order of precedence for Exclude and Include within the
DiscoAgentDiscoveryScoping section is:
1. Exclude
2. Include

The order of precedence for VRF and VPN within the
DiscoAgentDiscoveryScoping is:
1. VRF
2. VPN

For example, if you include a VPN, but another filter excludes a VRF in your VPN,
then the VRF is excluded. If a VPN is excluded, but another filter includes a VRF
within that VPN, then the VRF is included.

VRF names are case sensitive and an asterisk (*) represents a wildcard for any
VRF or VPN name when used in the name part of the configuration. The wildcard
can be used with any of the above options.

Chapter 2. Configuring network discovery 113

Scoping by VPN name works only when the VRF names configured on the devices
discovered by the MPLS agents are in the Cisco-recommended VRF format. A VRF
is named based on the VPN or VPNs serviced, and the topology type. The format
for the VRF names are:
V [number assigned to make the VRF name unique]: [VPN_name]

For example, in a VPN called precision, a VRF for a hub edge router would be:
V1:precision

A VRF for a spoke edge router in the precision VPN would be:
V1:precision-s

A VRF for an extranet VPN topology in the precision VPN would be:
V1:precision-etc

The following example scopes a discovery in a system where there are four VRFs:
V65:Precision-etc, V65:Precision-s, V65:Precision, and V44:AcmeSheds.
//2 VRFs are to be included
//
DiscoAgentDiscoveryScoping
{

IncludeVRF = “V65:Precision-etc”;
IncludeVRF = “V44:AcmeSheds”;

}
//All 4 VRFs are to be included
//
DiscoAgentDiscoveryScoping
{

IncludeVPN = “Precision”;
IncludeVRF = “V44:AcmeSheds”;

}

Related reference:
“disco.config table” on page 183
The config table configures the general operation of the discovery process.

Configuring VPN naming conventions:

If you do not use the Cisco VRF naming convention, you can configure your own
VPN naming convention by making the appropriate inserts into the
MPLSAddVPNNames.stch stitcher located in $NCHOME/precision/disco/stitchers/.

The MPLSAddVPNNames stitcher extracts and constructs a VPN name from the list of
paths discovered by the Path Tracing stitchers. The MPLSAddVPNNames stitcher can
then add the VPN name to the device interfaces that fall under the paths belonging
to the VPN.

The following example shows where to modify the VPN name in the
MPLSAddVPNNames.stch file, located in $NCHOME/precision/disco/stitchers.

//VPN Name Assignment
//
//Currently assigns the VRF name as the VPN Name if no VPN name
//has been discovered by the agent, i.e., if the VRF name was not in
//the Cisco format.
//
vpnName = eval(text, '&m_VPNName’);

114 IBM Tivoli Network Manager IP Edition: Discovery Guide

if (vpnName == NULL)
{

vpnName = vrfName; //VPN=VRF, customize as required.
}

Fine-tuning label data:

The MPLS discovery method (RT-based or LSP-based) determines whether the
MPLS agents retrieve MPLS label data.
v If you choose RT-based discovery, the MPLS agents do not retrieve label data.
v If you choose LSP-based discovery, the MPLS agents retrieve label data.

If you choose an RT-based discovery, but want to retrieve label data, it is possible
to do this manually with the following insert in the DiscoAgentDiscoveryScoping
section of the appropriate MPLS.agnt file:
DiscoAgentDiscoveryScoping
{

GetMPLSLabelData = 1;
}

Related tasks:
“Configuring MPLS discovery method” on page 108
You can configure MPLS discovery in either of two ways: Route Target (RT)-based
discovery; Label Switched Path (LSP)-based discovery.

Configuring NAT discoveries
Configure a Network Address Translation (NAT) discovery to discover NAT
environments, by mapping the address-space identifier for a NAT domain to the IP
address of the associated NAT gateway device.

About Network Address Translation
The number of available IP addresses in the current 32–bit format is not enough to
meet the growth in demand for access to the Internet. Network Address
Translation (NAT) was designed as a short-term solution to this problem by
providing a method of connecting multiple computers to an IP network using
either a single unique public IP address, or a small number of unique public IP
addresses.

NAT is commonly used in corporations, where a NAT router sits at the edge of the
private network (referred to in this context as a stub domain) and translates the IP
addresses attached to packets entering and leaving the stub domain. The NAT
router, which effectively acts as an agent between the Internet and the local
network, maintains a list of the mappings between public and private addresses.

Note: A stub domain is a local network using internal IP addresses. The network
can use unregistered, private, IP addresses for internal communication—these
addresses must be translated into unique, public, IP addresses when
communicating outside the network. The addresses used internally by a given stub
domain can also be used internally by any other stub domain.

For example, when a computer within the private network requests information
from the public network, the NAT router automatically translates the private
address of that computer into the public address of the domain, which is the only
address that is transmitted to the public network. When the requested information
is returned, the NAT router consults its internal list of public to private address
mappings in order to forward the information to the appropriate computer.

Chapter 2. Configuring network discovery 115

There are a number of different ways to configure a NAT environment. The
following descriptions detail the most common types of NAT environment.

Static NAT Environments:

In a static NAT environment, the NAT router maps private and public addresses
on a one-to-one basis, that is, the private address of a given device always maps to
the same public address. This type of NAT environment is commonly used for
devices that need to be accessible to the public network.

Dynamic NAT environments:

In a dynamic NAT environment, the NAT router dynamically allocates public IP
addresses, from a group of addresses, to devices on the private network that wish
to communicate with the public network. A variation on dynamic NAT, overloading
or PAT (Port Address Translation), maps multiple private addresses to the same
public address using different ports.

Private Address Ranges:

The Internet Assigned Numbers Authority (IANA) has assigned several address
ranges to be used by private networks.

Address ranges to be use by private networks are:
v Class A: 10.0.0.0 to 10.255.255.255

v Class B: 172.16.0.0 to 172.31.255.255

v Class C: 192.168.0.0 to 192.168.255.255

An IP address within these ranges is therefore considered non-routable, as it is not
unique. Any private network that needs to use IP addresses internally can use any
address within these ranges without any coordination with IANA or an Internet
registry. Addresses within this private address space are only unique within a
given private network.

All addresses outside these ranges are considered public.

About NAT discovery
You can use Network Manager to manage NAT environments, though there are
some restrictions on the types of NAT environment that are currently supported.

Network Manager can interrogate known, supported NAT gateways to obtain a list
of public to private IP address mappings of devices in NAT domains. Alternatively,
these mappings can be supplied manually. Network Manager can then discover
those devices behind the NAT gateways that have a public IP address.

Each NAT domain has a unique address-space identifier. Each device in a NAT
domain has the appropriate address-space identifier appended to its record. This
enables the devices to be managed (for example, polled).

116 IBM Tivoli Network Manager IP Edition: Discovery Guide

Restrictions on NAT discovery:

There are several restrictions on the management of NAT environments using
Network Manager.

Management of NAT environments using Network Manager is restricted by the
following conditions:
v Network Manager can discover one or more NAT environments, but they must

all use static NAT address mapping.
v Network Manager can discover devices in multiple NAT domains, regardless of

whether the private IP addresses of the devices are duplicated in other NAT
domains. However, the public IP address of each device in each domain must be
unique.

v Devices within a NAT domain that have only private IP addresses cannot be
discovered or managed by Network Manager.

v The discovery process must discover the NAT environment from outside, that is,
from the public network.

v Virtual IP addresses such as Hot Standby Routing Protocol (HSRP) addresses
cannot be mapped. The real physical address must be used.

v The following must be supplied before the discovery is run:
– The addresses of all supported NAT gateways.
– The NAT gateway translations must be discovered, either automatically or by

supplying the NATTextFileAgent discovery agent with a flat file of
public-to-private IP address mappings.

Differences in a NAT discovery process flow:

The process flow of a NAT discovery differs from the process flow of a normal
discovery.
Related concepts:
“Discovery cycles” on page 285
A discovery cycle has occurred when the discovery data flow for a particular cycle
has gone from start to finish. A full discovery might require more than one cycle.

Downloading translation information:

NAT translation information is downloaded by the NAT agents into the
translations.NATTemp database table before the finders process any other entities.

All other discovered devices are inserted into the finders.pending table while the
BuildNATTranslation.stch stitcher creates a global translation table and stores it in
the translations.NAT database table.

The finders, helpers, and other components that need to access devices can use this
table to look up the address of any device behind a NAT gateway.

Chapter 2. Configuring network discovery 117

Creating the topology:

When the topology is created, the AddBaseNATTags.stch stitcher adds NAT
information to the topology record of each device in a NAT domain.

Table 14 shows the information that is added to the topology record for each
device.

Table 14. NAT information added to a device record

Column Description

ExtraInfo->m_AddressSpace The name of the NAT address space to which the
device belongs. This value is set in the
translations.NATAddressSpaceIds table. If the
discovery is not using NAT, or if the device is in
the public domain, this value is NULL.

ExtraInfo->m_NATTranslated A Boolean integer indicating whether the device
lies behind a NAT gateway.

ExtraInfo->m_InsideLocalAddress The private address of the device.

ExtraInfo->m_OutsideGlobalAddress The public address of the device.

Configuring a NAT discovery
Configure a NAT discovery to discover NAT environments and to enable Network
Manager to manage NAT environments.

You set most of the NAT discovery settings from the Discovery Configuration GUI,
except for the following tasks:
v Configure the NATTextFileAgent agent to provides support for any unsupported

NAT gateway devices
v Configure the NATGateway agent to correct the potential problem of incorrect

connectivity when the NAT gateway is not in the public address space.

Quick reference for NAT discovery configuration:

Use this information as a step-by-step guide to configuring a NAT discovery..

The steps are described in the following table.

Table 15. Quick reference for NAT discovery configuration

Action Using the GUI Using the command line

1. Configure the discovery to use network address
translation. You can do this using the Discovery
Configuration GUI, or using the command line.

“Configuring NAT
translation” on page 33

“Enabling NAT translation”
on page 120

2. Define each NAT gateway device and its
corresponding address space. You can do this using the
Discovery Configuration GUI, or using the command
line.

“Defining address spaces
for NAT gateways” on page
120

118 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 15. Quick reference for NAT discovery configuration (continued)

Action Using the GUI Using the command line

3. Seed the Ping finder with the IP address of each NAT
gateway device.

“Seeding discovery” on
page 20

Guidance for seeding a
discovery
“DiscoPingFinderSeeds.cfg
configuration file” on page
61

Guidance for seeding a
NAT discovery
“Seeding discovery with
NAT gateway addresses” on
page 122

4. Define a scope zone for each NAT gateway device.
Note: You do not need to define a scope zone for any
NAT Gateway devices whose IP address is already
within any other scope zones defined for the discovery.
Note: Do not define an address space for the NAT
gateway devices or for public subnet scopes. Address
space can only be defined for private subnets.

“Scoping discovery” on
page 17

Guidance for scoping a
discovery
“DiscoScope.cfg
configuration file” on page
64

Example: how to define a
scope zone for a private
NAT subnet
“Defining a scope zone
within a NAT domain” on
page 121

5. Define scope zones for the public subnets associated
with each NAT address space.
Note: Do not define an address space for the NAT
gateway devices or for public subnet scopes. Address
space can only be defined for private subnets.

6. Where possible, define scope zones for the private
subnet associated with each NAT address space.
Restriction: You can only define a scope zone for a
private NAT address space where the subnet and
netmask combination of the private subnet is unique
within the discovery configuration.

Make the following settings when defining this scope:

1. Uncheck the Add to Ping Seed List option. You
must do this because private subnets are not
pingable.

2. Define an address space for this private subnet.

The advantages of adding a scope zone for each private
NAT address space are as follows:

v This ensures that only addresses in that private space
are fed back during the discovery.

v If the NAT Gateway device and the devices within
the associated NAT address space are routers. then
adding a scope zone for that private NAT address
space limits the download of unnecessary routing
data.

7. Enable NAT agents as follows:

v For supported NAT Gateway devices, enable the
CiscoNATTelnet or NATNetScreen agent.

v For unsupported NAT Gateway devices, create a NAT
mapping file and enable the NATTextFileAgent agent

“Activating agents” on page
27

“Enabling agents for
supported NAT gateway
devices” on page 123

“Enabling agents for
unsupported NAT gateway
devices” on page 123

Chapter 2. Configuring network discovery 119

Related tasks:
“Example: Configuring a NAT discovery” on page 125
This example illustrates how to define address spaces using the NATTextFileAgent
agent and how to set up associated discovery scopes.

Enabling NAT translation:

You can set the discovery system to use NAT translation by editing
$NCHOME/etc/precision/DiscoConfig.cfg to create or amend an insert into
disco.NATStatus to set m_UsingNAT to 1 and m_NATStatus to 0.

The completed insert must resemble the following:
insert into disco.NATStatus
(

m_UsingNAT,
m_NATStatus

)
values
(

1,
0

);

Related tasks:
“Configuring NAT translation” on page 33
To configure NAT translation to discover NAT environments, map the
address-space identifier for a NAT domain to the IP address of the associated NAT
gateway device.
“Enabling NAT translation”
You can set the discovery system to use NAT translation by editing
$NCHOME/etc/precision/DiscoConfig.cfg to create or amend an insert into
disco.NATStatus to set m_UsingNAT to 1 and m_NATStatus to 0.

Defining address spaces for NAT gateways:

To specify the IP address of your NAT gateways and the address space identifier
you want to use for each associated NAT domain, edit DiscoConfig.cfg to create
or amend an insert into translations.NATAddressSpaceIds.

Follow these guidelines when defining address spaces for NAT gateways:
v The IP address must be the public IP address that is accessible from the

management server.
v The address space field can be any descriptive string, but avoid special

characters such as quotes. Use the standard rules for DNS names for the address
space because the address space might make up part of the name of these
devices.

The following example insert configures the discovery system for two NAT
gateways.
insert into translations.NATAddressSpaceIds
(

m_NATGatewayIP,
m_AddressSpaceId

)
values
(

’172.16.1.112’,
’NATDomain1’

120 IBM Tivoli Network Manager IP Edition: Discovery Guide

);

insert into translations.NATAddressSpaceIds
(

m_NATGatewayIP,
m_AddressSpaceId

)
values
(

’172.16.1.104’,
’NATDomain2’

);

Related tasks:
“Configuring NAT translation” on page 33
To configure NAT translation to discover NAT environments, map the
address-space identifier for a NAT domain to the IP address of the associated NAT
gateway device.
“Enabling NAT translation” on page 120
You can set the discovery system to use NAT translation by editing
$NCHOME/etc/precision/DiscoConfig.cfg to create or amend an insert into
disco.NATStatus to set m_UsingNAT to 1 and m_NATStatus to 0.

Defining a scope zone within a NAT domain:

You can customize inclusion and exclusion zones for individual NAT domains,
using the m_AddressSpace column of the scope.zones table.

The following example insert defines an inclusion zone for a private subnet
associated with a NAT domain.
insert into scope.zones
(

m_Protocol, m_Action, m_Zones, m_AddressSpace
)
values
(

1,
1,
[

{
m_Subnet="172.16.2.*",

}
],
"NATDomain1"

);

The above example defines one inclusion zone. Network Manager discovers any
device with an IP address starting with "172.16.2", that is, in the private
172.16.2.0 subnet with a mask of 255.255.255.0, and that also belongs to the
NAT address space NATDomain1. The protocol is set to 1, that is, IP.

Note: Do not define an address space for the NAT gateway devices or for public
subnet scopes. Address space can only be defined for private subnets.

Chapter 2. Configuring network discovery 121

Related tasks:
“Configuring NAT translation” on page 33
To configure NAT translation to discover NAT environments, map the
address-space identifier for a NAT domain to the IP address of the associated NAT
gateway device.
“Enabling NAT translation” on page 120
You can set the discovery system to use NAT translation by editing
$NCHOME/etc/precision/DiscoConfig.cfg to create or amend an insert into
disco.NATStatus to set m_UsingNAT to 1 and m_NATStatus to 0.

Seeding discovery with NAT gateway addresses:

Seed a NAT discovery by inserting into the Ping finder the IP addresses of the
main routers within the system. Also seed the discovery with the IP addresses of
the NAT gateway IPs.

In a NAT-based discovery, the discovery must discover the NAT gateways before
discovering the rest of the network, so the NAT gateways must first be found with
a finder.

Network Manager is configured to trigger the seeding of all the NAT gateways if
NAT translation has been enabled. However, the triggering relies on the Ping
finder being active. If seeding is done, for example, using only the File finder, then
the NAT gateways are not pinged even if NAT translation has been enabled. It is
good practice, therefore, to seed the discovery with all the NAT gateways. You can
do this using the File finder, Ping finder, or any other method.

You can also seed the discovery with NAT gateways using the Discovery
Configuration GUI.
Related tasks:
“Configuring NAT translation” on page 33
To configure NAT translation to discover NAT environments, map the
address-space identifier for a NAT domain to the IP address of the associated NAT
gateway device.
“Enabling NAT translation” on page 120
You can set the discovery system to use NAT translation by editing
$NCHOME/etc/precision/DiscoConfig.cfg to create or amend an insert into
disco.NATStatus to set m_UsingNAT to 1 and m_NATStatus to 0.

Enabling NAT agents:

If you are running a NetScreen
®

Firewall or a Cisco
®

Router as a NAT gateway, you
must use either the CiscoNATTelnet agent or the NATNetScreen agent.

Ensure that you enable the appropriate NAT translation agents. These agents must
run to discover the NAT gateways. If they are not run, discovery cannot complete
as it cannot properly discover the network without first discovering the NAT
Gateways.

The NAT agents are currently CiscoNATTelnet, NATNetScreen and
NATTextFileAgent. The CiscoNATTelnet agent works on Cisco IOS routers
providing NAT translation and is not certified for PIX firewalls. The NATNetScreen
agent is for NetScreen firewalls.

122 IBM Tivoli Network Manager IP Edition: Discovery Guide

If you are using a NAT gateway other than a NetScreen Firewall or a Cisco Router,
you must use the Perl agent NATTextFileAgent.pl, as described in “Enabling
agents for unsupported NAT gateway devices.”

Enabling agents for supported NAT gateway devices:

The CiscoNATTelnet and NATNetScreen agents connect directly to the NAT
gateways to download the address mappings. You can configure these agents.

Before running these agents, you must do the following tasks:
v Enable NAT translation
v Configure trap handling

To configure and run the agents:
1. Enable the agents. There is an insert into the disco.agents table in the

DiscoAgents.cfg configuration file for every installed discovery agent. To
activate an agent, you must alter the insert so that the m_Valid column for that
agent is set to 1. To deactivate an agent, ensure that m_Valid=0.
The following example insert activates the CiscoNATTelnet agent.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence,
m_DebugLevel, m_LogFile

)
values
(

’CiscoNATTelnet’, 1, 8, 0, 2, 4,
"$NCHOME/log/precision/CiscoNatTelnet.log"

);

2. Run a discovery.
Related tasks:
“Activating agents” on page 27
You must enable the appropriate agents for the discovery you want to perform.
You can specify agents for a full discovery or for a partial discovery.

Enabling agents for unsupported NAT gateway devices:

The NATTextFileAgent is provided as a backup if your NAT translation device is
unsupported. You can configure this agent.

Before running the NATTextFileAgent agent, you must do the following tasks:
v Enable NAT translation
v Configure trap handling

The NATTextFileAgent reads a flat file called NATTranslations.txt that contains the
NAT translations present on a particular NAT gateway. This allows the discovery
an avenue to support a network containing a currently unsupported NAT gateway.
This agent does not download its information from the NAT gateways, but reads a
list of private to public IP address mappings from a flat file.

To configure and run the agent:
1. Install the Perl API. All Perl agents require the API to run. The API is installed

by default in Network Manager.
To check whether the API is installed, check that the following file exists:
$NCHOME/precision/bin/ncp_perl

Chapter 2. Configuring network discovery 123

If the file is listed, then the Perl API is installed.
2. Create a NAT mapping file to be read by the agent that contains the public to

private address mappings. Your NAT mapping file must be in a format that can
be read by the agent, that is, the values must be valid IP addresses specified in
columns separated by tabs.
By default, the agent uses the file $NCHOME/etc/precision/
NATTranslations.txt. If you want to create your own mappings, you must back
up and edit this default file. To make the agent use the non-default NAT
mapping file, edit the following line in $NCHOME/precision/disco/agents/
Perlagents/NATTextFileAgent.pl:
my $natFileName = "$ENV{$NCHOME}/etc/precision/NATTranslations.txt";

3. The NAT mapping file contains the following columns:
v The IP address of the NAT gateway of the NAT domain to which the device

belongs. You must specify mappings for all NAT gateways in the same file.
v The outside global address of the device, that is, the public address of the

device.
v The inside local address of the device, that is, the private address of the

device.
The following example shows a NAT mapping file for two gateways having
IP addresses of 1.2.3.4 and 1.2.3.9 respectively.
// NATGatewayIP PublicIP PrivateIP
1.2.3.4 2.3.4.5 10.10.1.1
1.2.3.4 2.3.4.6 10.10.1.2
1.2.3.9 2.3.6.1 10.10.1.1
1.2.3.9 2.3.6.2 10.10.1.2

Note: From the perspective of the management station, the public IP address
of a particular gateway translation is not necessarily the same as the public
address that the management stations sees. The public address is the IP address
that the gateway retrieves from one port and then translates and places on
another port. This difference is important to note when you have chained
gateways, where an IP address can be translated multiple times. The public IP
is effectively the IP address that is closer to the management domain.

4. Enable the agent. There is an insert in the disco.agents table in the
DiscoAgents.cfg configuration file for every installed discovery agent. To
activate an agent, alter the insert so that the m_Valid column for that agent is
set to 1. To deactivate an agent, ensure that m_Valid=0.
The following example insert activates the NATTextFileAgent agent.
insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence, m_IsPerl
)
values
(

’NATTextFileAgent’, 1, 8, 0, 2, 1
);

5. Ensure that the NATTimer.stch stitcher has been configured to trigger a
rediscovery against the NAT gateways. By default, the NATTimer.stch stitcher
runs every hour. You can alter this interval by locating the following line in the
stitcher file and changing the integer value:

ActOnTimedTrigger((m_Interval) values (1) ;) ;

6. Run a discovery.

124 IBM Tivoli Network Manager IP Edition: Discovery Guide

Enable agent for NAT gateway devices in private address space:

When the NAT gateway is not in the public address space, you can enable the
NATGateway agent to correct the potential problem of incorrect connectivity.

The discovery assumes that the management interface of the NAT gateway is in
public address space. If this is not the case, Network Manager cannot identify the
address space of interfaces on the NAT gateway device, which might result in
incorrect connectivity. For example, when a VPN is used to access the management
interface, the NAT gateway management interface is not in the public address
space.

The NATGateway agent enables Network Manager to determine whether a given
interface on a NAT gateway device is on the public or private side of the NAT
gateway, and thereby correctly resolve device connectivity.

To overcome this problem, activate the NATGateway agent and provide Network
Manager with a mapping file, NATGateways.txt. In this file, provide a list of all
NAT gateway devices together with the interfaces on each device and a field to
indicate whether the interface is on the public or private side of the NAT gateway.

This agent works in conjunction with the NATGatewayRetProcessing.stch stitcher
and with the NATGateways.txt file in NCHOME/precision/etc

Table 16 provides the format of the NATGateways.txt file by showing an example
of the content of this file. Fields in this text file must be separated by tabs.

Table 16. Format of NATGateways.txt file

Base name Inside or outside Interface IP address

1.1.1.4 outside 172.16.4.10

1.1.1.4 inside 10.52.2.10

sca_T1ukP_16 outside 192.168.36.93

sca_T1ukP_16 outside 192.168.36.98

Example: Configuring a NAT discovery:

This example illustrates how to define address spaces using the NATTextFileAgent
agent and how to set up associated discovery scopes.

Do the following tasks before running through the steps in this example:
v Configure the discovery to use network address translation.
v Seed the Ping finder with the IP address of each NAT gateway device.

In this example the NAT gateway devices are unsupported. This means that the
NATTextFileAgent agent must be used in this NAT discovery.

The NATTextFileAgent agent uses a NAT mapping file, with the following content.
There are three NAT gateway devices, with mappings for each of the devices in the
associated address spaces.
//First NAT gateway and mappings
//NATGateway PublicIP Private IP
201.201.201.201 61.61.61.1 192.168.1.1
201.201.201.201 61.61.61.2 192.168.1.2
201.201.201.201 61.61.61.3 192.168.1.3

Chapter 2. Configuring network discovery 125

201.201.201.201 61.61.61.4 192.168.1.4
201.201.201.201 61.61.61.5 192.168.1.5
201.201.201.201 61.61.61.6 192.168.1.6

//Second NAT gateway and mappings
//NATGateway PublicIP Private IP
202.202.202.202 62.62.62.1 192.168.1.1
202.202.202.202 62.62.62.2 192.168.1.2
202.202.202.202 62.62.62.3 192.168.1.3
202.202.202.202 62.62.62.4 192.168.1.4
202.202.202.202 62.62.62.5 192.168.1.5
202.202.202.202 62.62.62.6 192.168.1.6

//Third NAT gateway and mappings
//NATGateway PublicIP Private IP
203.203.203.203 63.63.63.1 192.168.3.1
203.203.203.203 63.63.63.2 192.168.3.2
203.203.203.203 63.63.63.3 192.168.3.3
203.203.203.203 63.63.63.4 192.168.3.4
203.203.203.203 63.63.63.5 192.168.3.5
203.203.203.203 63.63.63.6 192.168.3.6

For the first and second address spaces private IP address space is not unique. For
both of these address spaces, the private IP address space is defined by a subnet
and netmask combination of 192.168.1.0/29.

Based on this NAT gateway device and address space data, define discovery
scopes as follows.
1. Define each NAT gateway device and its corresponding address space. In this

example, the names of the three NAT address spaces are RTP1, RTP2, and
RTP3. For example, for the third NAT gateway device, the following insert
defines the NAT device and its associated address space, RTP3:
insert into translations.NATAddressSpaceIds
(

m_NATGatewayIP, m_AddressSpaceId
)
values
(
"203.203.203.203", "RTP3"
);

2. Define a scope zone for each NAT gateway device.

Note: You do not need to define a scope zone for any NAT Gateway devices
whose IP address is already within any other scope zones defined for the
discovery.
For example, for the first NAT gateway device, the following insert defines the
scope zone:
insert into scope.zones
(

m_Protocol, m_Action, m_Zones, m_AddressSpace
)
values
(

1,
1,
[

{
m_Subnet="201.201.201.201",
m_NetMask=32

126 IBM Tivoli Network Manager IP Edition: Discovery Guide

}
],
""

);

3. Define scope zones for the public subnets associated with each NAT address
space. For example, for the third public subnet, the following insert defines the
scope zone:
insert into scope.zones
(

m_Protocol, m_Action, m_Zones, m_AddressSpace
)
values
(

1,
1,
[

{
m_Subnet="63.63.63.0",
m_NetMask=29

}
],
""

);

4. Define a scope zone for the private subnet associated with the third NAT
address space only.

Restriction: You can only define a scope zone for a private NAT address space
where the subnet and netmask combination of the private subnet is unique
within the discovery configuration. This excludes the first and second private
subnet.
For the third private subnet, the following insert defines the scope zone:
insert into scope.zones
(

m_Protocol, m_Action, m_Zones, m_AddressSpace
)
values
(

1,
1,
[

{
m_Subnet="192.168.3.0",
m_NetMask=29

}
],
"RTP3"

);

5. Enable the NATTextFileAgent agent.

Now you can launch the NAT discovery.
Related reference:
“Quick reference for NAT discovery configuration” on page 118
Use this information as a step-by-step guide to configuring a NAT discovery..

Chapter 2. Configuring network discovery 127

Post-configuration NAT tasks
After you have configured NAT discoveries, you can complete several
post-configuration tasks.

Tracking the progress of a NAT discovery:

During the discovery of the NAT-translation devices, you can track the discovery
status in the disco.NATStatus values.

During the discovery, you initially see only the NAT-translating devices displayed
in the agent despatch and returns tables. All the other data returned from the
finders is stored in finders.pending database table while the discovery of the
NAT-translating devices takes place.

Issue the following OQL select statement to see the discovery status:
select * from disco.NATStatus;

This statement displays a value from 0 to 4. The meaning of the value is:
v 0: NAT discovery in initial state. NAT devices have not been processed.
v 1: NAT discovery initiated. NAT gateway IPs have been sent to the Ping finder

to verify their existence
v 2: NAT discovery is running.
v 3: NAT discovery processing. All the NAT gateways have been processed and

the discovery is now building the translations.NAT table. This table ensures the
correct discovery of the rest of the network.

v 4: NAT discovery complete. The entries in the finders.pending table have been
moved into the finders.processing table, and the discovery continues as normal.

Use the results of this query to debug a problematic NAT discovery. The value
indicates whether any discovery problems are caused by NAT or caused by the
standard (non-NAT) part of the discovery process.

Debugging a NAT discovery:

To analyze a NAT discovery, use ncp_oql to follow the data through the system
from the start (finders) to the end (scratchTopology) until you determine where the
data is incorrect. Incorrect data indicates whether the problem is with an agent, a
device, or a stitcher.

There are several queries that are useful when debugging a discovery, both
NAT-based and not NAT-based.

The following OQL query indicates which agents are currently either being started
(m_State=1), starting (m_State=2) or running (m_State=3):
select * from agents.status where m_State <> 0 AND m_State <> 4;

This query tells you which agents the current phase is waiting for in order to
complete. The discovery is waiting for the agents that are meant to complete in the
current phase and are in state 1, 2 or 3.
select * from <agentName>.despatch
where m_UniqueAddress NOT IN

((
select m_UniqueAddress from <agentName>.returns where m_LastRecord = 1
));

128 IBM Tivoli Network Manager IP Edition: Discovery Guide

Using the first query, you can see which agents are still running in a particular
phase.

Using the following query, you can determine which entity that particular agent is
processing. This can be useful in determining a problem device within your
network:
select * from translations.ipToBaseName where m_IpAddress = ’<ip>’;

This second query shows you what base address and base name is being used for
a particular IP as well as whether this IP address is considered to be in scope.

Activating the Containment Model for use with NAT:

The NATAddressSpaceContainers.stch stitcher creates virtual objects for each
address space that contains the entities within that address space. You can activate
this stitcher by uncommenting the line, //
ExecuteStitcher("NATAddressSpaceContainers");, in the file $NCHOME/precision/
disco/stitchers/CreateScratchTopology.stch.

Viewing NAT environments using Topoviz Network Views:

Using Topoviz Network Views, you can create network views based on the values
of any column in the topology record of an entity. A NAT Address Spaces Dynamic
Distinct view is created automatically if you activated NAT discovery as part of
your discovery configuration.

As an example of viewing NAT environments, you could created a filtered
network view or a Dynamic Distinct view on the following field in the NCIM
topology database:
v ipEndPoint table
v addressSpace field

Note: A NAT Address Spaces Dynamic Distinct view is created automatically if
Enable Network Address Translation (NAT) Support is turned on as part of your
discovery configuration.

Chapter 2. Configuring network discovery 129

130 IBM Tivoli Network Manager IP Edition: Discovery Guide

Chapter 3. Monitoring network discoveries

You can monitor the state and progress of your network discovery using the GUI
or the command line.

Monitoring network discovery from the GUI
From the Active Discovery Status page, you can monitor the status and progress of
the current discovery, investigate the work of the discovery agents, and view
details of the last discovery.

From the Active Discovery Status page, you can also start and stop discoveries.
Related tasks:
“Starting a discovery” on page 43
After you configure a discovery, you can start and, if necessary, stop the discovery.
“Reviewing the configuration” on page 16
On the Configuration Summary window, review your settings. You can also save
the settings here, and, optionally, start the discovery with the settings that you
configured.
“Manually discovering a device or subnet” on page 156
You can manually discover devices so that the network topology in Network
Manager matches the network.
“Starting partial discovery from the GUI” on page 158
Starting a partial discovery involves defining a seed and scopes.

Monitoring discovery progress
You can use the Monitoring pane to monitor the progress of the current discovery
through each of the discovery phases.

To open the Monitoring pane, click Discovery > Network Discovery Status, and
then click the Monitoring bar.

The following phases are shown in the table.

Interrogating Devices
During this phase, devices are first discovered by the finders, and then
information is retrieved from the devices by the agents. This phase is also
known as phase 1.

Resolving Addresses
During this phase, the agents resolve IP to MAC address translations. This
phase is also known as phase 2.

Downloading Connections
During this phase, the switch agents download the forwarding tables from
the switches in the network. This phase is also known as phase 3.

Correlating Connections
During this phase, the connectivity between the devices is calculated, the
containment model is created, and the network topology is built. This
phase is also known as phase -1.

© Copyright IBM Corp. 2006, 2013 131

You can see which phase the current discovery is in by looking at the Status
column of the table. If a phase has not started, this column is empty. If a phase is
in progress, this column shows a spinning wheel icon. If a phase has completed
successfully, this column shows a green tick icon.

Status Shows the status of a particular phase. The column shows the following
kinds of status.

Table 17. Discovery phase status

State Icon Description

Completed If a phase has completed successfully, this column shows a green
tick icon.

In
progress

If a phase is in progress, this column shows a spinning wheel
icon.

Not
started

If a phase has not started, this column is empty.

You can see how long each phase is taking in the Elapsed Time column in the
table. Each phase takes a different amount of time depending on the scope of the
discovery, the complexity of the network, and the amount of detail being retrieved
from the devices. If the elapsed time continues to increase, and the work
completed does not increase, the discovery might be encountering problems.

Remember: In the first phase, the count of IP addresses discovered stops
increasing part way through the phase. This is part of the normal operation of the
discovery. The count of IP addresses discovered only increases during the first part
of the phase, while the finders discover new devices. In the latter part of the
phase, the discovery agents retrieve information from these devices, and new IP
addresses are not discovered.

The Discovery Agents section shows the progress of the discovery agents. If you
think that a phase is taking too long to complete, click the Discovery Agents tab to
see what the discovery agents are doing.

You can see the progress within a phase in the Work Completed column in the
table. For the first phase, this column shows the number of IP addresses found so
far. For the other phases, this column shows the percentage of work completed in
the phase.
Related concepts:
“Discovery stages and phases” on page 280
The discovery process can be divided into two stages: data collection and data
processing. The stages are subdivided into phases.

Comparing discoveries
You can use the Monitoring pane to compare the current discovery to the previous
full discovery.

You cannot compare partial discoveries. The data in the Previous columns in the
table is for the last full discovery.

To open the Monitoring pane, click Discovery > Network Discovery Status, and
then click the Monitoring bar.

132 IBM Tivoli Network Manager IP Edition: Discovery Guide

You can see the time taken to complete each phase of the previous discovery in the
Previous subcolumn of the Elapsed Time column.

Note: To display discovery times from all previous discoveries, run the
disco_profiling_data.pl script from the command line. For more information on
the disco_profiling_data.pl script, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

The time taken for each phase depends on the scope of the discovery, the
complexity of the network, and the amount of detail being retrieved from the
devices. If the network has not changed significantly, and the discovery scope and
settings have not changed significantly, but the elapsed time for a phase in the
current discovery is significantly more than the time taken for the same phase in
the previous discovery, the discovery might be encountering problems.

You can see how many IP addresses are being found in the current discovery and
how many were found in the previous discovery in the Work Completed column
in the table. If significantly fewer IP addresses have been found in the current
discovery, there could be a problem with the scope of the discovery, or with SNMP
access to devices.

Monitoring ping finder progress
You can use the Ping Finder Status table to monitor the progress of the ping
finder during a discovery.

To open Ping Finder Status, click Discovery > Network Discovery Status, and
then click the Ping Finder Status tab.

You can use the Ping Finder Status table to see which IP addresses and subnets
have been discovered up to this point. If the ping finder is currently processing a
subnet, you can also see which IP address was last pinged.

The Ping Finder Status table contains the following information:

Address
A list of IPs and subnets discovered to this point.

Netmask
For each subnet, this column indicates the netmask value.

Last Pinged
The last IP address pinged.

Status Indicates whether the Ping finder is still pinging this device or subnet or
whether it has completed pinging.

Table 18. Ping finder status

State Icon Description

Completed Ping finder has completed the pinging of this subnet or IP
address.

Started Ping finder is currently pinging this subnet or IP address.

Stopped Ping finder has not started pinging this subnet or IP address.

Awaiting
status

System is awaiting Ping finder status for this subnet or IP
address.

Chapter 3. Monitoring network discoveries 133

Monitoring discovery agent progress
You can use the Agents Status section to monitor the progress of the discovery
agents through each of the discovery phases.

Discovery agents gather data from discovered devices. This data is used during the
Correlating connectivity phase of the discovery (phase -1) to build the network
connectivity and containment.

You can use the Agents Status to answer these and other questions as the
discovery is running:
v Are all agents running okay?
v Have any agents failed?
v Are any agents failing to complete?
v Which device is a particular agent currently working on?
1. To open Agents Status, click Discovery > Network Discovery Status, then

click the Agents Status tab. The Agents Status section contains two tables, the
Agents Status table at the top and the IP Address Status table below. The
Agents Status table toolbar contains the following controls.

Filter Agents by Phase
Use the phase drop-down list to select a discovery phase. The agents
table then displays all discovery agents that have started during the
current discovery and that are scheduled to finish in the discovery
phase that you selected.

Refresh
Refreshes the data in both the Agents Status and IP Address Status

table. The icon changes to the Refreshing icon while the table data
is being refreshed. You cannot refresh the tables again until the refresh
has completed.

The Agents Status table lists all the agents that have started so far during this
discovery and contains the following information. This information is updated
every 20 seconds. When you first open this table, it is sorted by descending
order of State.

Agent Discovery agents that have started during the current discovery and
that are scheduled to finish in the discovery phase that you selected.

Completes in Phase
The phase in which the discovery agent completes.

State Current state of the discovery agent. Possible states, in the default
descending order, are listed in the following table.

Table 19. Agent states

State Value Icon Description

Died 5 The agent has terminated unexpectedly. This is a
potential discovery problem.

Finished 4 The agent is still running but has finished processing of
all the IP addresses in its queue. The agent is still
available to process any further agents placed in the
queue.

Running 3 The agent is currently processing IP addresses.

134 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 19. Agent states (continued)

State Value Icon Description

Starting 2 The agent is starting up.

Not
running

1 The Agent is not running.

Total IP Addresses
The total number of IP addresses that this agent is required to process.
This number increases as the discovery progresses and the finders
discover more devices that need to be processed by the agent.

Outstanding IP Addresses
The number of IP addresses that are waiting to be processed by this
agent. This number can go up and down during the discovery. The
number increases initially as the discovery progresses and the finders
discover more devices that need to be processed by the agent. As the
agent completes processing on IP addresses, this number decreases
until it reaches zero.

Note: If this value does not go down to zero during the discovery, this
means that the agent was unable to complete processing on one or
more IP addresses and there is a potential discovery problem.

2. Click an agent in the Agents Status table. The IP Address Status table lists the
IP addresses that have been processed or are currently being processed by this
agent. The IP Address Statustable responds to changes in the Agents Status
table. The table updates in the following situations: when a new agent is
selected in the Agents Status table; when changing the filtering of the IP
Address Status table by All or Queue; and when the Agents Status table

Refresh button is pressed. When you first open this table, it is sorted by
descending order of State.

Agent_name
Use this radio button to specify whether to display all IP addresses
(All) or only IP addresses queued for processing (Queue). The default
setting is Queue.

All Set the Details table to display all IP addresses for this agent.
This includes IP addresses that have been queued for
processing by the agent, IP addresses currently being processed
by the agent, and IP addresses that have already been
processed by the agent.

Queue
Set the Details table to display only IP addresses that have
been queued for processing by this agent.

IP Address
IP addresses processed by this agent. If All is selected, then this column
displays IP addresses processed, in processing, or queued for
processing by this agent. If Queued is selected, then this column
displays IP addresses queued for processing by this agent.

State Current state of the IP address. Possible states, in the default
descending order, are listed in the following table:

Chapter 3. Monitoring network discoveries 135

Table 20. IP address states

State Value Icon Description

Died 5 Processing of the IP address terminated unexpectedly.
This is a potential discovery problem.

Finished 4 An agent has completed processing this IP address.

Running 3 An agent is currently processing this IP address.

Starting 2 An agent is beginning to process this IP address.

Not
running

1 This IP address is not currently being processed.

Elapsed Time
The time taken for the agent to process this IP address, expressed in the
format HH:MM:SS. This value is only displayed for those IP addresses
that have completed processing.

Despatch Time
The date and time at which the agent began processing this IP address.
This value is only displayed for those IP addresses for which
processing has begun or completed.

Return Time
The date and time at which the agent retrieved data for this IP address.
This value is only displayed for those IP addresses that have completed
processing.

SNMP Access
Indicates whether the agent was able to access this IP address using
SNMP.

Related tasks:
“Troubleshooting an unusually long discovery” on page 165
A discovery might be taking a long time to complete because an agent is unable to
complete processing on a specific device. Use the Agents Status section to
determine which agent is taking a long time to complete and which device it is
working on.
“Identifying failed agents” on page 167
A source of discovery failure can be agents that terminate unexpectedly during
discovery. Use the Agents Status section to determine if any agents have
terminated unexpectedly.

Monitoring discovery from the command line.
When the ncp_disco process is running, you can monitor the progress of the
discovery by using the OQL Service Provider, the ncp_oql process, to query the
discovery databases to determine what is happening at any time.

The queries demonstrated in the subsequent topics have been generalized for all
discovery scenarios and are not limited to the layer 3 discovery.

The examples are given only to demonstrate the amount of flexibility you have
when retrieving information from databases using OQL. Using the schematic
definitions of all the databases and knowledge of OQL syntax, you can construct
queries that answer any questions you have regarding the current status of the
discovery process.

136 IBM Tivoli Network Manager IP Edition: Discovery Guide

You can issue simple queries to find out, for example, what the ncp_disco process
is currently doing, which discovery agents have discovered devices, or how many
devices have been discovered so far. You can also issue complex queries to find
out, for example, which devices have been discovered by a specific discovery
agent, or which discovery agents have interrogated a specific device.

For information on starting the OQL Service Provider, including prerequisites, see
the IBM Tivoli Network Manager IP Edition Language Reference.
Related tasks:
“Discovering the network using the command-line interface” on page 47
As an experienced user, you can configure and track a network discovery using
configuration files and database queries.

Sample discovery status queries
You can use queries similar to these examples to find out the status of different
parts of the discovery.

Sample: Determining which address the Ping finder is pinging

The following query returns the current address being pinged by the Ping finder:
select m_CurrentAddress from pingFinder.status;
go
.
{

m_CurrentAddress=192.168.0.1;
}

Sample: Identifying the current phase of the discovery

The following example shows how to identify the current phase of the discovery.
The results of the above query show that the discovery process is still in data
collection phase 1.
select * from disco.status;
go
.
{

m_DiscoveryMode=0;
m_Phase=1;
m_BlackoutState=0;
m_CycleCount=0;
m_ProcessingNeeded=0;
m_FullDiscovery=0;

}

Sample: Identifying the status of a NAT discovery

This example shows how to identify the status of the NAT discovery.
select m_NATStatus from disco.NATStatus;
go
.
{

m_NATStatus=3;
}

Sample: Identifying which agents are enabled

This example shows how to identify whether you have enabled the appropriate
discovery agents.

Chapter 3. Monitoring network discoveries 137

select m_AgentName, m_Valid from disco.agents
where m_Valid = 1;
go
...
{

m_AgentName=’Details’;
m_Valid=1;

}
{

m_AgentName=’AssocAddress’;
m_Valid=1;

}
{

m_AgentName=’IpRoutingTable’;
m_Valid=1;

}
{

m_AgentName=’IpForwardingTable’;
m_Valid=1;

}

Sample: identifying the status of the discovery stitchers

The following example shows how to identify the status of the stitchers by
querying the stitchers.status table.
select * from stitchers.status
where m_State > 0 ;
go
.........
{

m_Name=’AgentRetToInstrumentationSubnet’;
m_State=3;

}
{

m_Name=’DetailsRetProcessing’;
m_State=3;

}
.....
.....
{

m_Name=’DetectionFilter’;
m_State=3;

}
{

m_Name=’FnderProcToDetailsDesp’;
m_State=3;

}
{

m_Name=’FnderRetProcessing’;
m_State=3;

}

The results from the query show the current status of all stitchers that have been
called by the discovery process so far. Note that the results shown above have
been abbreviated.

Sample: identifying which agents are active

The following example shows how to query the status of the agents in the agents
database.
select * from agents.status
where m_State > 0 ;
go
..

138 IBM Tivoli Network Manager IP Edition: Discovery Guide

{
m_Name=’Details’;
m_State=3;
m_NumConnects=1;

}
{

m_Name=’IpRoutingTable’;
m_State=3;
m_NumConnects=1;

}

The results of the above query show that only the Details agent and the
IpRoutingTable agent are active (that is, they have a state greater than zero).
Related reference:
Appendix A, “Discovery databases,” on page 183
There are various specialized databases that are used by ncp_disco, the component
that discovers network device existence and connectivity, and by ncp_model, the
component that manages, stores, and distributes the discovered network topology.

Sample device queries
You can use queries similar to these examples to identify devices that meet certain
criteria, for example, devices that have been found by the finders.

Sample: Identifying which devices have been found by the
finders

The following example shows how to identify devices that have been found by the
finders.
select * from finders.returns;
go
....
{

m_UniqueAddress=’172.20.12.253’;
m_Protocol=1;
m_Creator=’IpRoutingTable’;

}
{

m_UniqueAddress=’172.20.22.61’;
m_Protocol=1;
m_Creator=’IpRoutingTable’;

}
{

m_UniqueAddress=’172.20.0.221’;
m_Protocol=1;
m_Creator=’IpRoutingTable’;

}
{

m_UniqueAddress=’10.10.35.17’;
m_Creator=’PingFinder’;

}

The above query shows the devices discovered by the Ping finder as well as
devices reported as a result of connections discovered by the IpRoutingTable
Discovery agent.

Sample: Identifying devices that have been sent to the Details
agent

The following example shows how to identify devices that have been sent to the
Details agent.

Chapter 3. Monitoring network discoveries 139

select * from Details.despatch;
go
...
................................
{

m_UniqueAddress=’10.10.38.82’;
}
{

m_UniqueAddress=’10.10.38.83’;
}
.....
.....
{

m_UniqueAddress=’10.10.38.84’;
}
{

m_UniqueAddress=’10.10.38.87’;
}
{

m_UniqueAddress=’10.10.38.88’;
}
{

m_UniqueAddress=’10.10.38.89’;
}
{

m_UniqueAddress=’10.10.38.90’;
}

Sample: Identifying devices that have been returned from the
Details agent

To identify which devices have returned from the Details agent, query the returns
table of the Details agent, as shown below.
select * from Details.returns;
go
...
................................
{

m_UniqueAddress=’10.10.8.255’;
m_UpdAgent=’Details’;
m_HaveAccess=1;
m_Description=’Ascend Max-HP T1/PRI S/N;
m_ObjectId=’1.3.6.1.4.1.529.1.2.6’;
m_LastRecord=1;

}
{

m_UniqueAddress=’10.10.9.1’;
m_UpdAgent=’Details’;
m_Name=’minotaur.Kazeem.San.COM’;
m_HaveAccess=0;
m_LastRecord=1;

}
.....
.....
{

m_UniqueAddress=’10.10.9.2’;
m_UpdAgent=’Details’;
m_Name=’cyclops.Kazeem.San.COM’;
m_HaveAccess=0;
m_LastRecord=1;

}
{

m_UniqueAddress=’10.10.9.3’;
m_UpdAgent=’Details’;

140 IBM Tivoli Network Manager IP Edition: Discovery Guide

m_Name=’centaur.Kazeem.San.COM’;
m_HaveAccess=0;
m_LastRecord=1;

}

Sample: Identifying all devices discovered until now

The following example shows how to identify all known network entities.
select m_Name, m_ObjectId, m_UniqueAddress
from workingEntities.finalEntity;
go
..................................
{

m_Name=’10.10.8.255’;
m_ObjectId=’1.3.6.1.4.1.529.1.2.6’;
m_UniqueAddress=’10.10.8.255’;

}
{

m_Name=’minotaur.Kazeem.San.COM’;
m_UniqueAddress=’10.10.9.1’;

}
.....
.....
{

m_Name=’cyclops.Kazeem.San.COM’;
m_UniqueAddress=’10.10.9.2’;

}

Sample: Identifying which agents have discovered devices

The following example shows how to identify the agents that have discovered
devices.
select m_Name, m_Creator
from workingEntities.finalEntity;
go
..................................
{

m_Name=’b11-m1-2611.Kazeem.San.COM[0 [2]]’;
m_Creator=’IpRoutingTable’;

}
{

m_Name=’b-ayo.Kazeem.San.COM’;
m_Creator=’Details’;

}
{

m_Name=’b11-m1-2611.Kazeem.San.COM[0 [1]]’;
m_Creator=’IpRoutingTable’;

}
.....
.....
{

m_Name=’b11-m1-2611.Kazeem.San.COM’;

Chapter 3. Monitoring network discoveries 141

Sample network entity queries
You can use queries on the instrumentation database to identify whether network
entities such as subnets and VLANs have been discovered. The instrumentation
database tables store a record of every discovered device.

Sample: Identifying the number of discovered subnets

The following example query returns details of the discovered subnets.
select * from instrumentation.subNet;
go
.......................................
{

m_SubNet=’172.20.67.0’;
m_NetMask=’255.255.255.0’;

}
.....
.....
{

m_SubNet=’172.20.70.0’;
m_NetMask=’255.255.254.0’;

}
{

m_SubNet=’172.20.95.0’;
m_NetMask=’255.255.255.0’;

}
(81 record(s) : Transaction complete)

Sample: Identifying discovered VLANs

The following example query returns details of the discovered VLAN IDs.
select * from instrumentation.vlan;
go
.......................................
{

m_Vlan=23;
}
{

m_Vlan=65;
}
.....
.....
{

m_Vlan=677;
}

(4826 record(s) : Transaction complete)

Sample complex discovery queries
You can use queries similar to these examples to identify devices that meet certain
criteria, for example, devices that have been found by particular discovery agents.

Identifying which devices have been discovered by a particular
agent

The following example query identifies which devices have been discovered by the
IpRoutingTable agent.
select m_Name, m_Creator
from workingEntities.finalEntity
where
m_Creator = ’IpRoutingTable’;

142 IBM Tivoli Network Manager IP Edition: Discovery Guide

go
.................................
{

m_Name=’10.10.63.194’;
m_Creator=’IpRoutingTable’;

}
.....
.....
{

m_Name=’b11-m1-2611.Kazeem.San.COM[0 [1]]’;
m_Creator=’IpRoutingTable’;

}
{

m_Name=’b11-m1-2611.Kazeem.San.COM’;
m_Creator=’IpRoutingTable’;

}

Identifying devices that have been sent to a specific agent

The following example query identifies devices that have been sent to the
IpRoutingTable agent.
select m_Name, m_ObjectId, m_Description
from IpRoutingTable.despatch;
go
.................................
{

m_Name=’10.10.63.193’;
m_ObjectId=’1.3.6.1.4.1.9.1.108’;
m_Description=’Cisco Internetwork Operating System Software

IOS (tm) 7200 Software (C7200-JS-M), Version 12.0(4)T, RELEASE SOFTWARE (fc1)
Copyright (c) 1986-1999 by Cisco Systems, Inc.
Compiled Thu 29-Apr-99 06:27 by kpma’;
}
.....
.....
{

m_Name=’10.10.71.248’;
m_ObjectId=’1.3.6.1.4.1.9.1.258’;
m_Description=’Cisco Internetwork Operating System Software

IOS (tm) MSFC Software (C6MSFC-IS-M), Version 12.0(7)XE1, EARLY DEPLOYMENT
RELEASE SOFTWARE (fc1)
TAC:Home:SW:IOS:Specials b-ayo k-az-eem for info
Copyright (c) 1986-2000 by Cisco Systems, Inc.
Compiled Fri 04-Feb-00 00:’;
}

Identifying devices that have been returned by a specific agent

The following example query identifies devices returned by the IpRoutingTable
discovery agent.
select m_Name from IpRoutingTable.returns;
go
.................................
{

m_Name=’10.10.71.248’;
}
.....
.....
{

m_Name=’10.10.71.248’;
}
{

m_Name=’10.10.71.248’;
}

Chapter 3. Monitoring network discoveries 143

Identifying additional devices that have been discovered by a
specific agent

An agent can discover additional devices by interrogating a device. In this
situation, the additional device would be in the returns table of that agent, but not
the despatch table. You can identify which devices are present in the
IpRoutingTable.returns table, but not in the IpRoutingTable.despatch table, by
performing a join between the IpRoutingTable.despatch and
IpRoutingTable.returns tables, as in the following example.
select IpRoutingTable.returns.m_Name from
IpRoutingTable.returns, IpRoutingTable.despatch
where
IpRoutingTable.returns.m_Name <>
IpRoutingTable.despatch.m_Name;
go
..
{

m_Name=’10.10.71.237’;
}
.....
.....
{

m_Name=’10.10.71.55’;
}
{

m_Name=’10.10.71.51’;
}

Identifying the devices that an agent has enqueued

The following example returns those devices in the despatch table that have not
yet been returned.
select * from <agent>.despatch
where
(
m_UniqueAddress NOT IN
((select m_UniqueAddress from <agent>.returns where m_LastRecord = 1))

);

Sample queries for locating a specific device
To see whether a specific device has been discovered, you can use queries similar
to these examples to search through the discovery data flow.

Sample: Identifying whether a device is present in the
workingEntities database

The following example query determines if the device is present in the
workingEntities database.
select * from workingEntities.finalEntity
where m_UniqueAddress =’10.10.63.239’;
go
.
(0 record(s) : Transaction complete)

144 IBM Tivoli Network Manager IP Edition: Discovery Guide

Sample: Identifying whether a device has been returned from the
AssocAddress agent

If the device is not present in the workingEntities database, you can use the
following example query to determine if the device has been returned from the
AssocAddress agent.
select * from AssocAddress.returns
where m_UniqueAddress = ’10.10.63.239’;
go
.
(0 record(s) : Transaction complete)

Sample: Identifying whether a device has been returned from the
Details agent

If the device has not been returned from the AssocAddress agent, you can use the
following example query to determine if the device has been returned from the
Details agent.
select * from Details.returns
where m_UniqueAddress = ’10.10.63.239’;
go
.
(0 record(s) : Transaction complete)

Sample: Identify whether a device has been sent to the Details
agent

If the device has not been returned from the Details agent, you can check if the
device has been sent to the Details agent by querying the Details.despatch table,
as shown below. This result indicates that the device has been sent to the Details
agent, but has not yet been processed.
select * from Details.despatch
where m_UniqueAddress=’10.10.63.239’;
go
.
{

m_UniqueAddress=’10.10.63.239’;
}
(1 record(s) : Transaction complete)

Sample: Identifying whether a device has been discovered by the
finders

If the device is not in the Details.despatch table, you can query the finders
database, as shown below. This result shows that the device has been discovered
by the finders.
select * from finders.processing
where m_UniqueAddress=’10.10.63.239’;
go
.
{

m_UniqueAddress=’10.10.63.239’;
}
(1 record(s) : Transaction complete)

select * from finders.returns
where m_UniqueAddress=’10.10.63.239’;
go
.
(0 record(s) : Transaction complete)

Chapter 3. Monitoring network discoveries 145

146 IBM Tivoli Network Manager IP Edition: Discovery Guide

Chapter 4. Classifying network devices

On completion of discovery, Network Manager IP Edition automatically classifies
all discovered network devices based on a predefined device class hierarchy. You
can change the way network devices are classified.

Changing the device class hierarchy
Change the device class hierarchy to change the way network devices are
classified. A common situation that requires a change to the class hierarchy is
when the discovery process identifies an unclassified device, that is, a device that
is not defined in the class hierarchy.

Following a discovery, you can check whether any devices are unclassified by
running the following reports:
v Devices with Unclassified SNMP Object IDs report
v Devices with Unknown SNMP Object IDs report

Listing the existing device classes
Before you edit AOC definitions and reinstantiate the topology, list the device
classes that are currently in use.

You list existing device classes by querying the ncp_model databases. The query
returns the names of the AOCs to which devices in the current topology have been
instantiated. Substitute your domain name and username where NCOMS and
admin are specified.
1. Log into the OQL Service Provider using the following command:

ncp_oql -domain NCOMS -username admin service Model You can also issue this
query using the Management Database Access page.

2. Specify the relevant password when prompted.
3. Type the following query:

select ClassName from master.entityByName;

go Here is an example of the output of this query:
{
ClassName=’Device’;
}
{
ClassName=’Interface’;
}
.....
.....
ClassName=’MainNode’;
}
{
ClassName=’CiscoSwitch’;
}
(131 record(s) : Transaction complete)

© Copyright IBM Corp. 2006, 2013 147

Creating and editing AOC files
Create and edit AOC files to classify unclassified devices or to change the class
hierarchy of your topology.

If the discovery process identified an unclassified device, you can classify the
device by creating a new AOC file that is specific to the device class to which this
device belongs.

You can edit AOCs in either of two ways: update the ncp_class databases, or
modify the AOC file definitions:
v If you want to update the ncp_class database (and therefore the current AOC

definitions) directly, then use the Management Database Access or the OQL
Service Provider.

v If you want to modify the AOC file definitions, then follow the steps in this
topic.

1. Go to the NCHOME/precision/aoc directory.
2. Back up any files that you want to edit.
3. Stop all running Network Manager processes.
4. Create a new text file or edit an existing AOC file using a text editor.

Restriction: Only alphanumeric characters and the underscore (_) character
may be used for AOC filenames. Any other characters, for example the
hyphen (-) are forbidden.

5. If you created a new AOC file, add a new insert to the class.classIds database
table in the ClassSchema.cfg configuration file.

6. Edit the startup options for the ncp_class process and set the -read_aocs_from
option to ensure that the new or changed AOC files are read.

7. Start all Network Manager processes.
8. Ensure that a domain-specific version of any new AOC files is present in the

NCHOME/precision/aoc directory.
9. Back up and remove the discovery cache files in the NCHOME/var/precision

directory.
10. Run a full discovery and check that the results match the changes you made.
Related reference:
“AOC specific to device class” on page 152
Use this sample AOC file to understand how Network Manager assigns discovered
devices to the device class at a lower level in the class hierarchy.

Applying AOC changes to the topology and to the reports
After you have updated the AOC definitions and passed the changes to ncp_class,
you can apply the changes to the topology by waiting for the next discovery to
complete or by restarting the discovery at the point when the topology is passed
from ncp_disco to ncp_model.

When the next full discovery completes, the AOC changes that you made are
automatically applied to the network topology.

If you do not want to wait for the next full discovery, use the appropriate stitcher
to restart the discovery at the required point. To re-instantiate the containment
model, you must start the stitcher that sends the scratch topology from ncp_disco
to ncp_model.

148 IBM Tivoli Network Manager IP Edition: Discovery Guide

1. Log into the OQL Service Provider or access the Management Database Access.
2. Issue the following query to the disco.status table to confirm that the ncp_disco

process is in rediscovery mode: select * from disco.status;

Here is a sample response.
m_DiscoveryMode=1;
m_Phase=1;
m_BlackoutState=0;
m_CycleCount=0;
m_ProcessingNeeded=0;
m_FullDiscovery=0;

From the results returned by the query, you can see that ncp_disco is currently
in the rediscovery mode, that is, m_DiscoveryMode=1.

3. Start the SendTopologyToModel stitcher. The SendTopologyToModel sends the
scratch topology from ncp_disco to ncp_model.
a. Ensure that you are in the OQL Service Provider or the Management

Database Access.
b. To insert the stitcher into the stitchers.actions table, issue the following

command:
insert into stitchers.actions
(m_Name)
values
(’SendTopologyToModel’);

After your OQL insert is accepted, the stitcher is invoked and the network
topology is sent to ncp_model. When the topology is sent, it is instantiated in
accordance with the modified AOC hierarchy.

4. In order to ensure that the newly classified devices are removed from the
Devices with Unclassified SNMP Object IDs report and the Devices with
Unknown SNMP Object IDs report, perform the following steps:
a. Clarify exactly which new sysObjectId values are being mapped by the new

or edited AOC files. For example, the original AOC files mapped the
following sysObjectId values:
v 1.2.3.4
v 1.5.6.*

Then two new sysObjectId values are added to the system: 1.9.8 and 1.5.6.7.
In the AOC file, the sysObjectId value 1.5.6.7 is covered by the mapping
1.5.6.*. However, the AOC file must be updated to add the sysObjectId
value 1.9.8.

b. Clarify which AOC files are mapped by the NCIM topology database
mappings table. The mappings table is used by the Devices with
Unclassified SNMP Object IDs report and the Devices with Unknown
SNMP Object IDs report to determine which data to show in the reports.
This table is not automatically updated when you edit AOC files and restart
the Topology manager, ncp_class, and consequently these reports continue
to show the new sysObjectId values as unclassified and unknown. The
mappings in the mappings table are also more specific than the mappings
in the AOC files. For example, the NCIM topology database mappings table
might contain the following data:

Table 21. Example of data from the NCIM topology database mappings table

mappingGroup mappingKey mappingValue Description

sysObjectId 1.2.3.4 Device Type A Description of Device
Type A

Chapter 4. Classifying network devices 149

Table 21. Example of data from the NCIM topology database mappings table (continued)

mappingGroup mappingKey mappingValue Description

sysObjectId 1.5.6.1 Device Type B Description of Device
Type B

sysObjectId 1.5.6.2 Device Type C Description of Device
Type C

In the AOC file, only the sysObjectId value 1.9.8 needed to be added
because the generic mapping 1.5.6.* covered the new sysObjectId value
1.5.6.7. However, in the NCIM topology database mappings table both
sysObjectId values 1.9.8 and 1.5.6.7 must be added.

c. From the command line, update the NCIM topology database mappings
table with relevant records for the new sysObjectId values. For example, to
add records for the two new sysObjectId values 1.9.8 and 1.5.6.7, issue the
following SQL insert statements:
insert into mappings (mappingGroup, mappingKey, mappingValue)
values (’sysObjectId’, ’1.9.8’, ’device_type’);
insert into mappings (mappingGroup, mappingKey, mappingValue)
values (’sysObjectId’, ’1.5.6.7’, ’device_type’);

Where device_type is the device type to which the sysObjectId value must be
mapped. For information on the NCIM topology database mappings table,
see the IBM Tivoli Network Manager IP Edition Topology Database Reference.

After the AOC changes have been applied to the topology, either automatically by
waiting for the next discovery, or manually by performing the steps in this topic,
you will notice the following changes are applied to network polling and
visualization.
v When you define a new polling policy, the new classes you defined are

displayed in the Classes tab in the Poll Policy Editor.
v When you visualize the network using network views, the network view tree

now displays the classes defined in the modified class hierarchy.
v If you updated the NCIM topology database mappings table as described then

the Devices with Unclassified SNMP Object IDs report and the Devices with
Unknown SNMP Object IDs report no longer return any devices.

AOC file samples
Use the AOC file samples to understand how Network Manager assigns
discovered devices to the device classes in the class hierarchy.

EndNode class
Use this sample EndNode class AOC file to understand how Network Manager
assigns discovered devices to the EndNode class.

Sample

The following sample AOC file fragment assigns devices to the EndNode class
using the filter defined in the instantiate_rule clause.
//***
//
// File : EndNode.aoc
//
//***
active object ’EndNode’
{

150 IBM Tivoli Network Manager IP Edition: Discovery Guide

super_class = ’Core’;
instantiate_rule = "EntityOID like ’1 \.3\.6\.1\.4\.1\.2021\.’ OR
EntityOID = ’1.3.6.1.4.1.2021’ OR
EntityOID = ’1.3.6.1.4.1.1575’ OR
EntityOID like ’1 \.3\.6\.1\.4\.1\.11\.2\.3\.9\.’ OR
EntityOID = ’1.3.6.1.4.1.11.2.3.9’ OR
(EntityType = 1 AND EntityOID IS NULL)
OR
...
OR
(
EntityOID = ’1.3.6.1.4.1.1977’
)
OR
(
EntityOID like ’1\.3\.6\.1\.4\.1\.2136\.’
)
OR
...

For the EndNode class the instantiate_rule is very long. It consists of multiple lines
comparing the EntityOID, (this is the sysObjectID of the device), to various values,
joined together by an OR operator. There are different versions of the OR
comparison:

EntityOID = '1.3.6.1.4.1.2021'
This filter is looking for an exact match of the EntityOID to the value
1.3.6.1.4.1.2021. If the match is not exact, then the comparison fails and the
device is not assigned to the EndNode class.

EntityOID like '1\.3\.6\.1\.4\.1\.11\.2\.3\.9\.'
This filter is looking for a match like the value 1\.3\.6\.1\.4\.1\.11\.2\.3\
.9\. The \. is required to make sure that the . (period) is matched. Also,
notice that the value ends in \. This allows matching OIDs that start with
the specified value but have additional values following the last . (period)
specified.

NetworkDevice class
Use this sample NetworkDevice class AOC file to understand how Network
Manager assigns discovered devices to the NetworkDevice class.

Sample

The following sample AOC file fragment assigns devices to the NetworkDevice
class using the filter defined in the instantiate_rule clause.
//***
//
// File : NetworkDevice.aoc
//
//***
active object ’NetworkDevice’
{
super_class = ’Core’;
instantiate_rule = ’EntityType = 1 OR // Chassis
EntityType = 2 OR // Interface
EntityType = 3 OR // LogicalInterface
EntityType = 5 OR // Card
EntityType = 6 OR // PSU
EntityType = 8 OR // Module
EntityType = 0’;
...

Chapter 4. Classifying network devices 151

For the NetworkDevice class, the instantiate_rule tries to match device types. The
following examples are filters that are used in the instantiate_rule.

EntityType = 1
Matches all entities discovered that are chassis devices. Chassis devices
have the field entityType set to a value of 1 in the NCIM topology
database entityData table.

EntityType = 2
Matches all entities discovered that are ports or interfaces. Ports and
interfaces have the field entityType set to a value of 2 in the NCIM
topology database entityData table.

EntityType = 3
Matches all entities discovered that are logical interfaces. Logical interfaces
have the field entityType set to a value of 3 in the NCIM topology
database entityData table.

EntityType = 5
Matches all entities discovered that are cards. Cards have the field
entityType set to a value of 5 in the NCIM topology database entityData
table.

EntityType = 6
Matches all entities discovered that are power supply units (PSUs). PSUs
have the field entityType set to a value of 6 in the NCIM topology
database entityData table.

EntityType = 8
Matches all entities discovered that are modules. Modules have the field
entityType set to a value of 8 in the NCIM topology database entityData
table.

AOC specific to device class
Use this sample AOC file to understand how Network Manager assigns discovered
devices to the device class at a lower level in the class hierarchy.

Sample

The following sample AOC file fragment assigns devices to the
EWindowsNetHarmoni class using the filter defined in the instantiate_rule clause.
This is an EndNode device.
//***
//
// File : EWindowsNetHarmoni.aoc
//
//***
active object ’EWindowsNetHarmoni’
{
super_class =’EndNode’;

instantiate_rule = "EntityOID like ’1 \.3\.6\.1\.4\.1\.1977\.1\.6\.1279\.’";
...

For the EWindowsNetHarmoni class, the following parameters are defined in the
AOC file. The instantiate_rule parameter is long. It consists of multiple lines
comparing the EntityOID, (this is the sysObjectID of the device), to various values,
joined together by an OR operator. There are different versions of the OR
comparison:

152 IBM Tivoli Network Manager IP Edition: Discovery Guide

super_class ='EndNode'
This parameter establishes the device as belonging to the EndNode class.
The EWindowsNetHarmoni class inherits all the attributes of the EndNode
class.

instantiate_rule = "EntityOID like '1 \.3\.6\.1\.4\.1\.1977\.1\.6\.1279\.'"
This filter is looking for a match to the value 1\.3\.6\.1\.4\.1\.11\.2\.3\
.9\. The \. is required to make sure that the . (period) is matched. Also,
notice that the value ends in \. This allows matching OIDs that start with
the specified value but have additional values following the last . (period)
specified.

Chapter 4. Classifying network devices 153

154 IBM Tivoli Network Manager IP Edition: Discovery Guide

Chapter 5. Keeping discovered topology up-to-date

After a discovery has completed, you can keep the discovered topology updated
by scheduling a discovery, configuring automatic discovery, manually discovering
devices, and removing devices.

Scheduling a discovery
After a full discovery has completed, you can schedule further discoveries by
editing the FullDiscovery.stch file.

To schedule a discovery using the FullDiscovery.stch file:
1. Back up and edit the NCHOME/disco/stitchers/FullDiscovery.stch file.
2. Uncomment one of the ActOnTimedTrigger lines, and modify it to run the

discovery at a certain time. As an example, to schedule the discovery for 11:00
PM every day, modify the line as follows:
ActOnTimedTrigger((m_TimeOfDay) values (2300) ;);

3. Save and exit the file.

Here are several other examples of scheduling a discovery.
v To schedule a discovery on the sixth day of the week since Sunday (Saturday) at

11 PM (where Sunday = 0, Monday = 1, Tuesday = 2, Wednesday = 3, Thursday
= 4, Friday = 5, Saturday = 6):
ActOnTimedTrigger((m_DayOfWeek , m_TimeOfDay)
values (6 , 2300) ;) ;

v To schedule a discovery on the thirteenth day of each month at 2 PM:
ActOnTimedTrigger((m_DayOfMonth , m_TimeOfDay)
values (13 , 1400) ;);

v To schedule a discovery at intervals of 13 hours:
ActOnTimedTrigger((m_Interval) values (13) ;);

Related concepts:
“About types of discovery” on page 1
Different terms are used to describe network discovery, depending on what is
being discovered and how the discovery has been configured. You can run
discoveries, rediscoveries, full and partial discoveries, and you can set up
automatic discovery.

Configuring automatic discovery
Network Manager provides a mechanism to automatically trigger a partial
discovery based on receipt of a trap. This is performed by the Disco plug-in to the
Event Gateway. Device traps might indicate a change in a network device or the
presence of a new network device.For more information on the Disco plug-in, see
the IBM Tivoli Network Manager IP Edition Event Management Guide.

© Copyright IBM Corp. 2006, 2013 155

Related concepts:
“About types of discovery” on page 1
Different terms are used to describe network discovery, depending on what is
being discovered and how the discovery has been configured. You can run
discoveries, rediscoveries, full and partial discoveries, and you can set up
automatic discovery.

Manually discovering a device or subnet
You can manually discover devices so that the network topology in Network
Manager matches the network.

Sometimes you might know that one or more devices have had their configuration
changed, and want to discover them again regardless of whether the system has
detected the change from traps sent by the devices.

You can manually discover a device or subnet in the following ways:
v You can use the Discovery Configuration GUI to specify individual devices or

complete subnets to be discovered.
v You can discover specific devices or sets of devices from the Hop View or

Network Views.
v You can make inserts to the finders.rediscovery table using ncp_oql, specifying

the IP address or subnet to be discovered.

Note: Do not use manual discoveries to remove devices from the topology. Devices
that are no longer accessible remain in the topology until their LingerTime reaches
zero and another discovery is run. Do manual discoveries only against devices that
are operational but whose configuration has been changed.
Related tasks:
“Removing a device from the network” on page 160
You can manually remove a device that is known to be scheduled for permanent
removal from the network.
“Monitoring network discovery from the GUI” on page 131
From the Active Discovery Status page, you can monitor the status and progress of
the current discovery, investigate the work of the discovery agents, and view
details of the last discovery.

Manually discovering a device or subnet using the GUI
You can configure and launch discovery of a device or subnet from the Discovery
Configuration GUI. You can customize the discovery configuration to make partial
discovery run as quickly as possible.

Enabling partial discovery agents
You can configure partial discovery by enabling the appropriate agents from the
Partial Discovery Agents tab in the Discovery Configuration GUI.

You can speed up the time taken for a partial discovery by selecting only those
agents essential to discover new or modified devices.
Related reference:
“Guidance for selecting agents” on page 336
To discover device technologies (that is, those that use protocols other than IP) on
your network, you must ensure that the appropriate agents are active.

156 IBM Tivoli Network Manager IP Edition: Discovery Guide

Configuring advanced partial discovery settings
Among the advanced partial discovery settings that you can configure are
feedback, rebuilding of layer, and remote neighbor parameters.

Configuring feedback settings:

You can specify feedback settings when configuring a partial discovery with the
GUI.

Feedback is the mechanism by which data returned by agents is used to find other
devices. Examples of feedback data include the IP address of remote neighbors, or
the subnet within which a local neighbor exists.

The feedback mechanism allows any new IP addresses to be fed back into the
discovery and thus increases the size of the discovered network. You need to
balance completeness of the discovered topology (feedback on) with greater speed
of discovery (feedback off).

You can choose from the following options after selecting the Advanced tab within
the Configuration option in the Discovery Configuration GUI:
v No Feedback: Feedback is off for all discoveries. This option provides speed but

discovers only those devices specified to the finders, and hence provides an
incomplete topology. However, this setting ensures that discoveries complete in
the quickest possible time.

v Feedback: Feedback is on for full discoveries and partial discoveries. This option
provides a complete topology in all situations but takes the longest time.

v Feedback Only on Full: Feedback is on for full discoveries, ensuring a complete
topology. For partial discoveries there is no feedback. This ensures that the
partial discovery runs in the quickest time possible. This is the default setting.

Configuring rebuilding of layer settings:

You can allow the rebuilding of the topology layers to display an accurate
topology when you configure a partial discovery.

To rebuild the topology layers following a partial discovery, select the Enable
Rediscovery Rebuild Layers setting on the Advanced tab within the Configuration
option in the Discovery Configuration GUI. If you specify that topology layers
should be rebuilt following partial discovery, the result is an accurate topology
showing all connectivity. However, the process of adding new devices takes longer.
Related concepts:
“Option to rebuild topology layers” on page 301
You can specify whether to rebuild the topology layers following a partial
rediscovery. Using this option, you can increase the speed of partial rediscovery.

Chapter 5. Keeping discovered topology up-to-date 157

Enabling discovery of remote neighbors for partial discovery:

You can improve the accuracy of connections found during a partial discovery by
enabling the discovery of remote neighbors.

By default, remote neighbor discovery is off. Enabling remote neighbor discovery
makes the discovery take longer.

With remote neighbour discovery on, Network Manager checks, during a partial
discovery, whether any connections to remote neighbors have changed. (Remote
neighbors in this context are connected devices that were in scope of the last full
discovery but are out of scope of the current partial discovery.)

If the connections have changed, the connected devices are included in the partial
discovery, resulting in a more accurate topology.

Restriction: If a connection between devices has changed, but the information
about the connection is stored only on the device that is out of scope, then the
change is not registered and the connected devices are not included in the partial
discovery. Enabling remote neighbor discovery increases the accuracy of the
topology, if it has changed, but does not ensure that all changes are discovered. For
the most accurate topology, run a full discovery.

To enable remote neighbor discovery, select Enable Rediscovery of Related
Devices on the Advanced tab within the Configuration option in the Discovery
Configuration GUI.

Starting partial discovery from the GUI
Starting a partial discovery involves defining a seed and scopes.

If a full discovery has not been run since the last time that the discovery engine,
ncp_disco, was started, you cannot start a partial discovery.

You can start a partial discovery of a device or subnet from the Active Discovery
Status window. You can also discover specific devices by right-clicking them from
within the Hop View and Network Views.

To start a partial discovery from the Active Discovery Status window, complete the
following tasks.
1. Select the domain in which you want to run a discovery from the Domain

menu. You can start to type the name of the domain, and matching domains
are listed below the Domain field.

2. Click the downward-facing arrow next to the Start Discovery button
and select Start Partial Discovery from the menu. The Partial Discovery
window is displayed. Specify the IP addresses and subnets that contain the
devices to be discovered

3. Under Partial Discovery, select the required nodes and subnets.
4. To add a new subnet or node, click New.

5. Complete the fields as follows and click OK:

Rediscover
Select one of the following options:

IP Address
Type the required IP address.

158 IBM Tivoli Network Manager IP Edition: Discovery Guide

Subnet
Type the required subnet and specify the number of netmask
bits. The Netmask field is automatically updated.

6. To add new scope zones, click Scope.

Note: If you add a scope zone that is not included within the scope of the last
full discovery, connections between devices in the new scope and the old scope
might not be accurate until the next full discovery. Enabling remote neighbor
discovery can help improve the accuracy of these connections.

7. To add a new discovery scope zone click New . To edit an existing scope
zone, click the required entry in the list.

8. Complete the fields as follows and click OK:

Scope By:
Select one of the following options:

Subnet
Type the required subnet and specify the number of netmask
bits. The Netmask field is automatically updated.

You can specify a subnet or an individual IP address using
these fields.
v For example, to specify a Class C subnet 10.30.2.0, type

10.30.2.0/24, where 10.30.2.0 is the subnet prefix, and 24 is
the subnet mask.

v To specify an individual device, type an IP address and a
subnet mask of 32. For example, type 10.30.1.20/32.

Wildcard
Use an asterisk (*) as a wildcard.

For example, to specify a scope of all IP addresses that begin
with the 10.30.200. subnet prefix, type 10.30.200.*.

Restriction: Network Manager does not support the IPv4–mapped IPv6
format and expects all IPv6 addresses to be in standard colon-separated
IPv6 format. For example, Network Manager does not support an
IPv4–mapped IPv6 address such as ::ffff:192.0.2.128. Instead enter
this address as ::ffff:c000:280 (standard colon-separated IPv6
format).

Protocol
Select the required Internet protocol: IPv4 or IPv6.

Action
Define the subnet range as an inclusion zone or exclusion zone. If the
subnet range is an inclusion zone that you intend to ping during the
discovery, click Add to Ping Seed List. Clicking this option
automatically adds the devices in the scope zone as a discovery seed
devices.

Restriction: The Add to Ping Seed List option is not available for IPv6
scope zones. This prevents ping sweeping of IPv6 subnets, which can
potentially contain billions of devices to be pinged. Ping sweeping of
IPv6 subnets can therefore result in a non-terminating discovery.

Chapter 5. Keeping discovered topology up-to-date 159

9. Click OK then click Go. When a partial discovery is running, the Start

Discovery button is toggled off .
Related concepts:
“About types of discovery” on page 1
Different terms are used to describe network discovery, depending on what is
being discovered and how the discovery has been configured. You can run
discoveries, rediscoveries, full and partial discoveries, and you can set up
automatic discovery.
Related tasks:
“Starting a discovery” on page 43
After you configure a discovery, you can start and, if necessary, stop the discovery.
“Monitoring network discovery from the GUI” on page 131
From the Active Discovery Status page, you can monitor the status and progress of
the current discovery, investigate the work of the discovery agents, and view
details of the last discovery.

Manually discovering a device or subnet from the command
line

You can manually discover a device or subnet from the command line.

To manually discover a device or subnet from the command line, make inserts to
the finders.rediscovery table using ncp_oql, specifying the IP address or subnet
to be discovered, as described in the following example.

Manual discovery

To manually discover the device with IP address 192.168.1.2, first start the OQL
Service Provider using the following command:
ncp_oql -domain NCOMS -service Disco

Having logged into the OQL provider, run the following query (note that the
command is entered on one line):
insert into finders.rediscovery (m_Address, m_RequestType) values
("192.168.1.2", 1);

When discovery of a device is forced like this, ncp_disco immediately passes it to
the Ping finder to confirm it exists, and, if it does, triggers the appropriate agents
to reanalyze it. If the connections from the device have changed, neighboring
devices might also be discovered.

Removing a device from the network
You can manually remove a device that is known to be scheduled for permanent
removal from the network.
1. Suspend polling against the device. This prevents any spurious alerts being

raised against the device by the monitoring system as the device is powered
off.

2. Physically remove the device from the network.
3. Immediately before the next full network discovery, set the linger time for the

record of the device in ncp_model to 0.

160 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related tasks:
“Manually discovering a device or subnet” on page 156
You can manually discover devices so that the network topology in Network
Manager matches the network.

Setting the linger time for a device
The value of the LingerTime field indicates how many discoveries a device can fail
to be found in before it is assumed to have been removed from the network and
its record is removed from the topology. Setting the LingerTime field to zero
ensures that when the device is not found in the next discovery, its record is
immediately removed from the topology.

To set the LingerTime field to zero:
1. Enter a command similar to the following to start the OQL Service Provider:

ncp_oql -domain NCOMS -service Model

2. Update the LingerTime field in the master.entityByName table for all entities
that represent the device. For example, if the device is called
core-router.abcd.com, enter the following command, on one line:
update master.entityByName set LingerTime = 0
where EntityName like ’core-router.abcd.com’;

Manually updating device details
Updated device details are sometimes not detected by discovery.

Sometimes changes you make to a device, such as giving it a new name, are not
detected by a subsequent discovery. When this happens, you can use the Remove
Node tool to remove the device from the network topology, and then rediscover
the device based on its new details.

To manually update a device, follow these steps:
1. Run the RemoveNode.pl script against the device.
2. Rediscover the device.

Chapter 5. Keeping discovered topology up-to-date 161

162 IBM Tivoli Network Manager IP Edition: Discovery Guide

Chapter 6. Troubleshooting discovery

You can troubleshoot discovery by monitoring discovery events and by running
discovery reports. You can also configure your own discovery events.

Troubleshooting discovery with reports
The troubleshooting reports provide easy visibility into the discovery results to
help with verification and troubleshooting of both the discovery results and the
network itself.

Network Manager uses the Tivoli® Common Reporting component to generate
reports. More information on Tivoli Common Reporting is located at
v Tivoli Common Reporting Information Center
v developerWorks® Tivoli Common Reporting

To access the reports in the Network Manager GUI, click Reporting > Common
Reporting in the navigation pane.

You can use reports for verifying and troubleshooting discovery results such as the
examples in Table 22.

For more information on the Network Manager reports, refer to the IBM Tivoli
Network Manager IP Edition Administration Guide.

Table 22. Report categories to use for discovery troubleshooting

Troubleshooting
task

Consult this report
category and report Benefit of the report

Identifying all
discovered nodes
and interfaces

Utility reports: Discovered
nodes and interfaces flat
file list

This report lists all nodes and interfaces
that were discovered. It also marks
interfaces or ports connected to network
devices. It allows you to check that
specific devices and interfaces were
actually discovered.

Resolving
mismatches

Troubleshooting reports:
Connected Interface Duplex
Mismatch

This report provides a list of
connections that have mismatches
between half- and full-duplex devices,
where one end of the connection is
half-duplex and the other end is
full-duplex. This mismatch is one of the
key configuration problems that
network managers have to find to
resolve performance or availability
issues.

Resolving
inaccessible devices

Troubleshooting reports:
Devices with no SNMP
Access

This report identifies the devices that do
not have SNMP access. You can then
identify the reason for the SNMP access
failure.

Resolving
unconnected
devices

Troubleshooting reports:
Devices With No
Connections

This report lists unconnected devices as
a first step in determining why the
discovery found no network
connections for a device.

© Copyright IBM Corp. 2006, 2013 163

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?topic=/com.ibm.tivoli.tcr.doc/ctcr_intro.html
http://www.ibm.com/developerworks/spaces/tcr

Table 22. Report categories to use for discovery troubleshooting (continued)

Troubleshooting
task

Consult this report
category and report Benefit of the report

Resolving
unclassified devices

Troubleshooting reports:
Devices with Unclassified
SNMP Object IDs

Using these reports, you can create
leaf-node AOC files for the new device
class.

Asset reports:

v Interface Availability

v Summary By Device
Class

v Vendor and Device
Availability

Resolving devices
with unregistered
SNMP object IDs

Troubleshooting reports:
Devices with Unknown
SNMP Object IDs

Using the information in this report,
you can modify the AOC files
associated with the unregistered
devices.

Identifying devices
pending deletion

Troubleshooting reports:
Devices Pending Delete on
Next Discovery

This report displays information on
devices to be deleted from the topology
if they are not found during the next
discovery cycle. The report allows you
to check that removal of devices from
the topology is progressing, and to
identify devices erroneously scheduled
for removal.

Monitoring discovery status
You can view discovery status messages to understand the status and progress of
the discovery. You can also configure your own discovery events.

Process flow for creating discovery events
Discovery events are created during the discovery process showing the progress of
agents, stitchers, and finders. These events are sent to and stored in Tivoli
Netcool/OMNIbus and can be viewed using the Web GUI.

Discovery events are created in the following stages:
v During the data collection phase of discovery, dedicated stitchers (AgentStatus

and FinderStatus) detect whether finders and agents have started or stopped.
v During the data processing phase, a dedicated stitcher (CreateStchTimeEvent)

detects key events; for example, discovery has started building the working
entities table, or the containment table.

v Whenever one of the above stitchers detects an event, it writes that event to the
disco.events table.

v The DiscoEventProcessing stitcher responds to an insert into the disco.events
table and creates and sends the appropriate event to the probe for Tivoli
Netcool/OMNIbus, nco_p_ncpmonitor, which then forwards the event to the
ObjectServer.

v You can switch the generation of discovery events on or off by setting the value
of the m_CreateStchrEvents field in the disco.config table.

You can configure your own discovery events by writing a stitcher to detect the
desired event and write that event data to the disco.events table.

164 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“disco.events table” on page 197
The events table constrains discovery events generated to a standard format. An
event is generated by inserting a record into this table.
“Main discovery stitchers” on page 341
This topic lists all discovery stitchers.

Monitoring discovery status messages
You can view discovery status messages to understand the status and progress of
the discovery.

The discovery processes, including agents, stitchers, and finders, send messages to
IBM Tivoli Netcool/OMNIbus when they start and stop. You can view these
messages to see if the discovery processes are running as expected, and to gauge
the overall progress of discovery.

To view discovery process status messages, complete the following tasks.
1. Click Availability > Events > Active Event List (AEL) to view the Active

Event List (AEL).
2. Apply a filter to the AEL so that only events with an Agent of ncp_disco are

displayed.
3. Optional: Refine the filter or sort on EventId to view only specific kinds of

discovery events.
4. Ensure that the LocalPriObj and LocalSecObj columns are displayed in the

AEL. These columns contain information for discovery events. (Not all columns
are used by all events.)

Troubleshooting discovery agents
You can use the Discovery Status GUI to troubleshoot discovery problems
associated with discovery agents.

Troubleshooting an unusually long discovery
A discovery might be taking a long time to complete because an agent is unable to
complete processing on a specific device. Use the Agents Status section to
determine which agent is taking a long time to complete and which device it is
working on.

To use the Agents Status section to determine if the cause of the problem is an
agent that is blocked on a device, complete the following steps:
1. Open the Agents Status section by clicking Discovery > Network Discovery

Status, and then clicking the Agents Status tab.
2. Set the Phases drop-down list above the upper Agents table to Interrogating

Devices. The upper Agents table now displays only agents that are scheduled
to complete in the first discovery phase, Interrogating Devices.

Note: This problem usually occurs during the first discovery phase,
Interrogating Devices.

3. Ensure that the State column is sorted in descending order. The agents appear
by default in descending order of agent state, as listed in the following table.

Chapter 6. Troubleshooting discovery 165

Table 23. Agent states

State Value Icon Description

Died 5 The agent has terminated unexpectedly. This is a
potential discovery problem.

Finished 4 The agent is still running but has finished processing of
all the IP addresses in its queue. The agent is still
available to process any further agents placed in the
queue.

Running 3 The agent is currently processing IP addresses.

Starting 2 The agent is starting up.

Not
running

1 The Agent is not running.

4. Scroll down the table to find the agents that have the status Running . These
are the agents that are still processing devices. If the discovery has been
running for an unusually long time, then there might be just one agent that still

has Running status . This is the blocked agent.

5. Select one of the agents with Running status . By default, the lower table
now displays all the IP addresses that are still queued for this agent.

6. Click the All radio button above the lower table. The lower table now shows
all IP addresses that have been processed by this agent, that are still being
processed by this agents, or that are in the agent queue.

7. Ensure that the State column is sorted in descending order. The IP addresses
appear by default in descending order of agent state, as listed in the following
table.

Table 24. IP address states

State Value Icon Description

Died 5 Processing of the IP address terminated unexpectedly.
This is a potential discovery problem.

Finished 4 An agent has completed processing this IP address.

Running 3 An agent is currently processing this IP address.

Starting 2 An agent is beginning to process this IP address.

Not
running

1 This IP address is not currently being processed.

8. Scroll down the table to find the IP addresses that have the status Running .
These are IP addresses that are still being processed by this agent. If the agent
is stuck on a single device, then there will only be one IP address with Running

status .
9. Look at the other information in the table to find out more about this IP

address. The Elapsed Time column indicates how long the agent has been
processing this device. The SNMP Access column indicates whether the agent
was able to gain SNMP access to this device.

If the agent was unable to gain SNMP access to the device, there might be a
problem with SNMP community string settings. Further investigation of this device
is required.

166 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related tasks:
“Monitoring discovery agent progress” on page 134
You can use the Agents Status section to monitor the progress of the discovery
agents through each of the discovery phases.

Identifying failed agents
A source of discovery failure can be agents that terminate unexpectedly during
discovery. Use the Agents Status section to determine if any agents have
terminated unexpectedly.

To use the Agents Status section to determine if any discovery agents are not
running correctly, complete the following steps:
1. Open the Agents Status section by clicking Discovery > Network Discovery

Status, and then clicking the Agents Status tab.
2. Ensure that the Phases drop-down list above the upper Agents table is set to

All Phases. The upper Agents table now displays all agents that have started so
far in this discovery.

3. Click the State column in the upper Agents table so that the agents are ordered
in descending order of State. The agents now appear in the table in
alphabetical order of status.

4. Any agents that have terminated unexpectedly will be at the top of the table
and will have the status Died.

Further investigation is required to determine why this agent terminated
unexpectedly.
Related tasks:
“Monitoring discovery agent progress” on page 134
You can use the Agents Status section to monitor the progress of the discovery
agents through each of the discovery phases.

Troubleshooting missing devices
If a device that you expect to find in your network topology is not present, follow
these steps to troubleshoot the problem.

Before following these steps, run a full discovery with feedback enabled.

To check some common causes for a device not being found in the network maps,
complete the following steps.
1. Verify that the device you're looking for is running and connected to the

network.
2. Search for the device.

a. Search for the device in the network maps by hostname and then by IP
address.

b. If you know which devices it is connected to, try finding one of the
connected devices in the Network Hop View. Then set the number of hops
to 1 and see if the device is shown as connected.

3. Check whether the device is in scope. Review the discovery scope, including
exclusion zones, in the Scope tab of the Network Discovery Configuration GUI.

4. Check if the device is being filtered out of the discovery.
a. Click Filters.

Chapter 6. Troubleshooting discovery 167

b. Review the prediscovery and postdiscovery filters to ensure that the device
is not being prevented from being discovered or instantiated.

Related tasks:
“Setting discovery filters” on page 28
Use filters to filter out devices either before discovery or after discovery. You can
filter out devices based on a variety of criteria, including location, technology, and
manufacturer. Filters provide additional restrictions to those defined in the scope
zones.
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.

Troubleshooting an idle discovery
If you start the discovery, and after some minutes no devices have been
discovered, follow these troubleshooting steps.

If the discovery status stays in phase zero (idle) after you start it, and no devices
have been discovered, try the following troubleshooting steps.
1. If you are using the file finder, check that you have correctly specified which

field in the seed file contains the IP address and which contains the host name.
You can verify these settings in the Discovery Configuration GUI.

2. If you are using the ping finder and pinging individual IP addresses, check that
these IP addresses are reachable. If not, you might have a network outage or a
firewall issue.

3. Verify that the seed IP addresses are in scope. Even if you add an address to
the ping finder or file finder, the device is not pinged or instantiated if it is not
included in the scope. For example, if your discovery scope is 172.16.1.0 /24
and your seeds are in the 192.168.1.0 /24 network, then the finders cannot find
them.

4. If you are pinging a large, sparsely populated subnet, for example, a class B
subnet containing only 10 devices, the ping finder might take a long time to
find the first device.

If you need to review the discovery logs, refer to the information about locating
log files and changing logging levels in the IBM Tivoli Network Manager IP Edition
Administration Guide.
Related tasks:
“Starting a discovery” on page 43
After you configure a discovery, you can start and, if necessary, stop the discovery.

Removing discovery cache files
Remove discovery cache files to perform a new, clean discovery.

To remove the current network discovery for a domain, you must remove all
discovery cache files. You might want to do this when you need to remove all data
from a previous discovery, or when directed to do so by IBM Support.

This procedure deletes all current discovery cache files and clears the discovery
database, effectively resetting discovery. After performing this procedure, you must
run a new full discovery of your network.

168 IBM Tivoli Network Manager IP Edition: Discovery Guide

Note: Because the network topology is stored separately in the NCIM database,
this procedure does not remove your network maps. However, any changes made
to your network since the last discovery are reflected in the next discovery.

Perform the following procedure to remove all discovery cache files:
1. Stop all Network Manager processes using the itnm_stop script.
2. Navigate to the $NCHOME/var/precision directory and remove all files that

belong to the domain you wish to remove. Files that belong to a particular
domain have the domain in the file name. For example, a configuration file
belonging to the domain NCOMS would be called file_name.NCOMS.cfg.

3. Optional: You can archive or remove existing log files and start the new
discovery with fresh log files. The log files for the following processes are
relevant:
v ncp_disco

v ncp_df_*
v ncp_agent*
v ncp_disco_perl_agent*

4. Restart the Network Manager processes using the itnm_start script.
New, empty log files are automatically created when the Network Manager
processes are restarted using the itnm_start scripts.

5. Perform a new network discovery.

Troubleshooting illegal characters in the Informix database
If you see an error message about illegal characters in insert statements into the
Informix database, follow these steps to troubleshoot the problem.

If you have network devices with characters in their descriptions that are not
allowed in the locale set in the Informix database, you might see an error message
similar to the following:
Warning: W-RIV-002-206: [4115626896t] CMdlDbEntityMgr.cc(647)
A database ’execute’ operation has failed :
SQLRETURN = -1 CNcpODBCSth.cc line 233 : [Informix][Informix ODBC Driver][Informix]
An illegal character has been found in the statement.

1. Back up and edit the SnmpStackSchema.cfg file.
2. Locate the line that configures an insert into the snmpStack.conversionCfg table

and edit it to the following:
insert into snmpStack.conversionCfg values (1);

3. Save and close the file.

The SNMP Helper substitutes characters returned from devices that are not
allowed in the Informix database locale with the question mark character: '?'.

The SNMP Helper substitutes characters on only those objects that are configured
in the snmpStack.multibyteObjects table.

Chapter 6. Troubleshooting discovery 169

170 IBM Tivoli Network Manager IP Edition: Discovery Guide

Chapter 7. Enriching the topology

You can enrich the topology by adding extra context to the information discovered
by the discovery process. For example, you can add custom tags to devices to
show the customer, location, or other information associated with that device. You
can then use this custom information to visualize or poll your network.

This section presents different examples of topology enrichment. Use these
examples for an idea of the different ways in which the topology can be enriched
and the different methods available to enrich your topology.

Adding tags to entities
You can associate one or more name-value pair tags with discovered entities.

The following table shows an example of a device with IP address 172.20.3.20, with
two associated name-value pair tags.

Table 25. Example of name-value pair tags

IP Address Name Value

172.20.3.20 customer acme

172.20.3.20 location london

Once the discovery has tagged your IP addresses with custom name-value pair
tags, you can use the custom name-value pair information to perform custom
visualization and polling tasks. For example, you could create a custom network
view to display all IP addresses that are tagged with the location "london".

Customizing the discovery
Use one of the following ways to customize the discovery to add name-value pair
tags to discovered entities: using the file finder, or using custom tag tables. If you
use the custom tag tables then you can also use logic defined in the GetCustomTag
stitcher to evaluate the value of the add name-value pair tag.

Adding tags to entities using the File finder
If you are using the File finder to seed your discovery, then you can add
name-value pair tags to entities by adding extra columns to the seed file read by
the File finder.

The example procedure below assumes that you are adding the following extra
columns to your File finder seed file:
v customer
v location

The following example text file fragment shows what the seed file might look like:
vi /var/tmp/logged_hosts

172.16.1.21 lnd-dharma-acme acme london
172.16.1.201 lnd-phoenix-acme acme london
172.16.1.25 prs-sun-acme acme paris
172.16.2.33 ranger1 telecorp newyork

© Copyright IBM Corp. 2006, 2013 171

172.16.2.34 ranger2 telecorp newyork
~
"/var/tmp/logged_hosts" [Read only] 4 lines, 190 characters

In this example text file fragment, the third column holds customer information,
and the fourth column holds location information.
1. Edit the DiscoFileFinderParseRules.cfg configuration file.
2. In this configuration file, configure the File finder to parse the seed file using

an insert similar to the example. Ensure that you configure the m_ColDefs field
to match the new custom tag columns.
insert into fileFinder.parseRules
(

m_FileName,
m_Delimiter,
m_ColDefs

)
values
(

"/var/tmp/logged_hosts",
"[]",
[

{
m_VarName="m_UniqueAddress",
m_ColNum=1

},
{

m_VarName="m_Name",
m_ColNum=2

}
{

m_VarName="m_CustomTags->customer",
m_ColNum=3

},
{

m_VarName="m_CustomTags->location",
m_ColNum=4

}
]

);

This insert instructs the File finder to do the following:
v Parse /var/tmp/logged_hosts.
v Treat white space as the data separator.
v Use the following column definitions:

– m_UniqueAddress for the first column
– m_Name for the second column
– m_CustomTags->customer for the third column
– m_CustomTags->location for the fourth column

3. Edit the DbEntityDetails.cfg file and configure an insert similar to the
following:
insert into dbModel.entityDetails
(

EntityType,
EntityDetails

)
values
(

1, -- chassis
{

Customer = "eval(text, ’&ExtraInfo->m_CustomTags->customer’)",

172 IBM Tivoli Network Manager IP Edition: Discovery Guide

Location = "eval(text, ’&ExtraInfo->m_CustomTags->location’)"
}

);
insert into dbModel.entityDetails
(

EntityType,
EntityDetails

)
values
(

2, -- port/interface
{

Customer = "eval(text, ’&ExtraInfo->m_CustomTags->customer’)",
Location = "eval(text, ’&ExtraInfo->m_CustomTags->location’)"

}
);

4. Restart Network Manager to propagate the configuration file changes:
itnm_start ncp -domain domain

Related tasks:
“Enabling polling and visualization using the custom tags” on page 178
After you have customized discovery to add custom tags you must ensure that the
NCIM topology database entityDetails table is updated with the custom tags. This
enables you to poll and visualize devices using these custom tags.

Adding tags to entities using custom tag tables
You can add name-value pair tags to entities by creating inserts containing the
name-value pair data into the disco.ipCustomTags table or into the
disco.filterCustomTags table.

Adding tags to entities using the disco.ipCustomTags table:

You can associate name-value pair tags to unique IP addresses using the
disco.ipCustomTags table.

The example procedure below assumes that you are adding the following two
custom name-value pair tags to entities in your discovery:
v customer
v location

This example uses the disco.ipCustomTags table to configure the following
name-value pair tags:

Table 26. Example of name-value pair tags

IP Address Name Value

172.16.1.21 customer acme

172.16.1.21 location london

172.16.1.201 customer acme

172.16.1.201 location london

172.16.1.25 customer acme

172.16.1.25 location paris

172.16.2.33 customer telecorp

172.16.2.33 location newyork

172.16.2.34 customer telecorp

172.16.2.34 location newyork

Chapter 7. Enriching the topology 173

1. Edit the DiscoConfig.cfg configuration file.
2. In this configuration file, add an insert similar to the following.

insert into disco.ipCustomTags
(

m_UniqueAddress,
m_CustomTags,

)
values
(

’172.16.1.21’,
{

customer="acme",
location="london"

}
);

insert into disco.ipCustomTags
(

m_UniqueAddress,
m_CustomTags,

)
values
(

’172.16.1.201’,
{

customer="acme",
location="london"

}
);

insert into disco.ipCustomTags
(

m_UniqueAddress,
m_CustomTags,

)
values
(

’172.16.1.25’,
{

customer="acme",
location="paris"

}
);

insert into disco.ipCustomTags
(

m_UniqueAddress,
m_CustomTags,

)
values
(

’172.16.2.33’,
{

customer="telecorp",
location="newyork"

}
);

insert into disco.ipCustomTags
(

m_UniqueAddress,
m_CustomTags,

)
values
(

174 IBM Tivoli Network Manager IP Edition: Discovery Guide

’172.16.2.34’,
{

customer="telecorp",
location="newyork"

}
);

3. Save the DiscoConfig.cfg configuration file.

You must now configure the DbEntityDetails.cfg configuration file to ensure that,
following discovery, the NCIM topology database entityDetails table is updated
with the custom tags.
Related tasks:
“Enabling polling and visualization using the custom tags” on page 178
After you have customized discovery to add custom tags you must ensure that the
NCIM topology database entityDetails table is updated with the custom tags. This
enables you to poll and visualize devices using these custom tags.

Adding tags to entities using the disco.filterCustomTags table:

You can associate name-value pair tags to a filtered set of IP addresses using the
disco.ipCustomTags table.

You can filter IP addresses based on a wide variety of criteria. For example, you
can filter based on device name, based on IP address, or based on VLAN identifier.
The example procedure below applies a filter based on IP address, and uses the
disco.filterCustomTags table to configure the following name-value pair tags to all
IP addresses in the subnet 172.20.3.0/24:

Table 27. Example of name-value pair tags

IP Address Name Value

172.20.3.0/24 customer acme

172.20.3.0/24 location london

1. Edit the DiscoConfig.cfg configuration file.
2. In this configuration file, add the following insert:

insert into disco.filterCustomTags
(

m_Filter,
m_CustomTags,

)
values
(

"m_UniqueAddress LIKE ’172.20.3’",
{

customer="acme",
location="london"

}
);

3. Save the DiscoConfig.cfg configuration file.

Other examples of filters

The procedure above applies a filter based on IP address: "m_UniqueAddress LIKE
’172.20.3’".

You can create a filter based on any attributes associated with discovered entities.
For example, you could apply the following filters:

Chapter 7. Enriching the topology 175

v Filter based on entity name: "m_Name LIKE ’lon’"

v Filter based on VLAN identifier of a VLAN entity: "m_LocalNbr->m_VlanID =
102"

You must now configure the DbEntityDetails.cfg configuration file to ensure that,
following discovery, the NCIM topology database entityDetails table is updated
with the custom tags.
Related tasks:
“Enabling polling and visualization using the custom tags” on page 178
After you have customized discovery to add custom tags you must ensure that the
NCIM topology database entityDetails table is updated with the custom tags. This
enables you to poll and visualize devices using these custom tags.

Enriching the topology using the GetCustomTag stitcher:

You can use the GetCustomTag stitcher to use logic to evaluate the value part of
the name-value pair.

The example procedure below makes use of the default logic in the
GetCustomTag.stch stitcher to add the following custom name-value pair tag to all
IP addresses in the subnet 172.20.3.0/24:

Table 28. Example of name-value pair tags

IP Address Name Value

172.20.3.0/24 Customer A-Z Inc., London

1. Edit the DiscoConfig.cfg configuration file.
2. In this configuration file, add the following insert:

insert into disco.filterCustomTags
(

m_Filter,
m_StitcherTagName,

)
values
(

"m_UniqueAddress LIKE ’172.20.3’",
’Customer’

);

This insert configures the system to perform the following action for each IP
address in the subnet 172.20.3.0/24: call the GetCustomTag.stch stitcher and
pass the name part of the Customer tag to this stitcher. The GetCustomTag.stch
stitcher will then evaluate the value for the Customer tag.

3. Save the DiscoConfig.cfg configuration file.

You must now configure the DbEntityDetails.cfg configuration file to ensure that,
following discovery, the NCIM topology database entityDetails table is updated
with the custom tags.
Related tasks:
“Enabling polling and visualization using the custom tags” on page 178
After you have customized discovery to add custom tags you must ensure that the
NCIM topology database entityDetails table is updated with the custom tags. This
enables you to poll and visualize devices using these custom tags.

176 IBM Tivoli Network Manager IP Edition: Discovery Guide

Example: GetCustomTag.stch stitcher:

Use this topic to understand how the GetCustomTag.stch stitcher works.

AddCustomTags.stch stitcher

The GetCustomTag.stch stitcher is called by the AddCustomTags.stch stitcher.

The AddCustomTags.stch stitcher loops through the tags and the entities in the
disco.ipCustomTags and disco.filterCustomTags tables. If, in either of these tables,
the m_StitcherTagName field is set, then the AddCustomTags.stch stitcher calls the
GetCustomTag.stch stitcher and passes the relevant entity name and the
m_StitcherTagName field as parameters. The m_StitcherTagName field holds the
name part of a name-value pair tag; for example, this field might have the value of
'Customer'. Once the AddCustomTags.stch stitcher has constructed all name-value
pairs for the IP addresses defined in the disco.ipCustomTags and
disco.filterCustomTags tables, it then passes the information downstream.

Note: The AddCustomTags.stch stitcher retrieves the entity name by performing a
lookup in the workingEntities.finalEntity table using the IP address information
provided in disco.ipCustomTags or disco.filterCustomTags table.

GetCustomTag.stch stitcher

The GetCustomTag.stch stitcher takes as input a single entity name and a the
m_StitcherTagName field, and uses logic to evaluate the value part of the
name-value pair. By default the stitcher contains the code described here. You can
customize this stitcher to work with different name-value pairs and you can
change the logic defining how the value is calculated.

Table 29. Line-by-line description of the GetCustomTag.stch stitcher

Line numbers Description

15 Set the value of the entityName variable from the first argument received
from the AddCustomTags.stch stitcher. The entityName variable holds the
entity name associated with the IP address for which the stitcher is
evaluating the value of a name-value pair tag.

16 Set the value of the tagName variable from the first argument received
from the AddCustomTags.stch stitcher. This is the name of the tag for
which the value is to be evaluated.

18 Set the value variable to zero. The value variable will be returned by the
stitcher and will hold the evaluated value of the name-value pair tag.

20-29 If the name of the tag to be evaluated is 'Customer', then calculate the
value of the tag. Calculate the value in the following way: if the entity
name contains the text pattern lon then set the value variable to the
customer name "A-Z Inc. London".

31 Return the value of the tag.

Chapter 7. Enriching the topology 177

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]
30]
31]
32]
33]

//
// This stitcher retrieves the value for a custom tag name
//
UserDefinedStitcher
{
StitcherTrigger
{
//
// Called from another stitcher
//
}

StitcherRules
{
text entityName = eval(text,’$ARG_1’);
text tagName = eval(text,’$ARG_2’);

text value = NULL;

if(tagName == "Customer")
{
// insert logic to retrieve custom tag
// As an example, we extract the hostname part of the name
int count = MatchPattern(entityName, ’(lon)’);
if (count == 1)
{
value = "A-Z Inc., London";
}
}

SetReturnValue(value);
}
}

Enabling polling and visualization using the custom tags
After you have customized discovery to add custom tags you must ensure that the
NCIM topology database entityDetails table is updated with the custom tags. This
enables you to poll and visualize devices using these custom tags.

To enable polling and visualization based on custom tags:
1. Go to the $NCHOME/etc/precision directory and edit the DbEntityDetails.cfg

file.
2. Uncomment the insert statement. For an example of the insert statement, see

“Sample insert statement” on page 179.

MODEL checks the ExtraInfo section of each interface record for the following
fields:
v m_CustomerName
v m_CustomerType

If either field is found, the value is inserted into the NCIM topology database
entityDetails table and is associated with an entityId that is equal to the value
specified in the current MODEL interface record. For more information on the
entityDetails table, see the IBM Tivoli Network Manager IP Edition Topology Database
Reference.

If a MODEL interface record does not contain an m_CustomerType or an
m_CustomerName attribute in the ExtraInfo section, or if either of these fields has
a NULL value, no row is added to the entityDetails table for that interface record.

178 IBM Tivoli Network Manager IP Edition: Discovery Guide

Sample insert statement
///
//
// This file provides a means to extend the NCIM database
// schema by adding key-value pair data to the database
// table named entityDetails.
//
//
//
// The following example assumes that a custom stitcher has been created
// with the ability to populate the ExtraInfo section of chassis
// entities with the name and type of each customer.
//
// insert into dbModel.entityDetails
// (
// EntityType,
// EntityDetails
//)
// values
// (
// 1, -- chassis
// {
// CustomerName = "eval(text, ’&ExtraInfo->m_CustomerName’)",
// CustomerType = "eval(text, ’&ExtraInfo->m_CustomerType’)"
// }
//);

You can now run a full discovery to discover your network with the custom tags.

Visualizing the enriched topology
Once you have created a topology in which certain entities are tagged with one or
more name-value pairs, you can create a custom network view to display the
tagged entities. You can also use the Network Hop View to search for tagged
entities.

In this example, you create a distinct dynamic network view that categorizes
devices by customer. This example assumes that you have tagged IP addresses
with a single name-value pair containing the customer name associated with that
IP address. The GetCustomTag.stch stitcher contains an example of how to do this.

For more information on creating network views, see the IBM Tivoli Network
Manager IP Edition Network Visualization Setup Guide.
1. Click Availability > Network Availability > Network Views. Click New View

.
2. Complete the General tab as follows:

Name Type a name for the network view, dynamic view, or network view
container.

Important: It is best practice to use network view names containing
Latin characters only. Network views names containing non-Latin
characters (for example Cyrillic characters) are not supported as they
cannot be imported and exported when migrating to a new version of
Network Manager.

Parent Select the node under which the view appears in the hierarchy in the
Navigation Tree. To display the view on the top level, select NONE.

Type Select Dynamic Views – Distinct.

Chapter 7. Enriching the topology 179

Layout
Select Orthogonal, Circular, Symmetric, Hierarchical, or Tabular
layout.

Map Icon
If you want a different icon than the default cloud icon to represent the

view, click Browse to browse for an icon.

Tree Icon
If you want a different icon than the default cloud icon to represent the

view, click Browse to browse for an icon.

Background Image

Click Browse to browse for an image to use as the background
for the view.

Background Style
Specify whether the background image is to be centered or tiled.

Line Status
Specify how the lines that represent the links between devices should
be rendered.

You can choose not to display any status, or to display the system
default. Alternatively, lines can be colored based on the associated AEL
event with the highest severity, and can appear with an additional
severity icon.

3. Click the Filter tab. From the Domain list, select your network domain.
4. In the Fields list, select the topology database table and field that correspond to

the categories and subcategories that you want to define.
a. Click Add....
b. From the Table list, select the entityDetails database table. The Field list is

automatically populated based on your selection.
c. Select the keyName field from the Field list.
d. Click OK.

As you select fields, the Preview list is updated to show the relationships
between the categories that you selected.

5. From the End nodes list, specify whether you want end nodes, such as printers
and workstations, to be displayed in the view.

6. From the Connectivity list, select the required connectivity:

Option Description

IP Subnets Displays device membership by subnet. To
simplify the view and make subnet
membership clear, this type of connectivity
does not show all connections.

Layer 2 Displays all datalink connections. No logical
connections are displayed.

180 IBM Tivoli Network Manager IP Edition: Discovery Guide

Option Description

Layer 3 Displays all logical connections. Routers are
displayed. Switches are not displayed,
unless they have an active connection that
involves a layer 3 interface. Connections
between layer 3 devices are displayed.
Connections between a layer 3 and a layer 2
interface are displayed between the layer 3
interface and the subnet to which the layer 2
interface belongs.

OSPF Displays connections based on discovered
OSPF information that includes router roles,
area membership, and connectivity.

PIM Displays connections based on PIM
adjacency information.

IPMRoute Displays connections based on IP Multicast
upstream and downstream routing
information.

No connections Does not present any of the discovered
connections for the nodes shown in the
view.

7. Click OK. The new view is added to the navigation tree in the Navigation
Panel. If you added the view to a container, expand the container node to see
the new view in the tree.

Now that you have created a distinct dynamic network view that categorizes
devices by customer, you can create a poll policy that polls some or all of the
customers.
Related tasks:
“Enriching the topology using the GetCustomTag stitcher” on page 176
You can use the GetCustomTag stitcher to use logic to evaluate the value part of
the name-value pair.

Polling the enriched topology
Now that you have created a distinct dynamic network view that categorizes
devices by customer, you can create a poll policy that polls some or all of the
customers.

In this example, you use the Poll Policy Wizard to guide you through the creation
of a poll policy. During the procedure you are provided the option to specify
which network views to poll. By selecting the distinct dynamic network views that
you created based on the customer name-value tag pairs, you are able to poll
devices based on the customer name associated with those devices.

If you require a fully-featured poll policy with multiple poll definitions and full
scoping features, then use the Poll Policy Editor. For more information on creating
poll policies, see the IBM Tivoli Network Manager IP Edition Event Management
Guide.
1. Click Administration > Network > Network Polling.

2. Click Launch Poll Configuration Wizard .
3. Click Next. Complete the Poll Policy Details page as follows:

Chapter 7. Enriching the topology 181

Name Specify a name for the poll policy. Only alphanumeric characters,
spaces and underscores are allowed.

Interval
Specify the required interval in seconds between poll operations. Click
the arrows to change the value.

Poll Enabled
Specify whether the poll should be enabled. The poll is enabled by
default. To disable the poll, clear this check box.

Store Poll Data
Select this check box to store the poll data so that it can be
subsequently retrieved for reporting. The data is stored in the
ncpolldata database.

Restriction: Storage of polled data is not supported for the Cisco
Remote Ping, the Juniper Remote Ping, and the Generic Threshold poll
definitions.

Definition
Select a poll definition from the list.

4. Click Next. On the Network Views page, navigate in the network views tree to
the node containing the distinct dynamic network views that you created. Open
the node and select the customer devices that you want to poll using this poll
policy.

5. Click Next. On the Poll Policy Summary page, review the information that you
specified and click Finish.

182 IBM Tivoli Network Manager IP Edition: Discovery Guide

Appendix A. Discovery databases

There are various specialized databases that are used by ncp_disco, the component
that discovers network device existence and connectivity, and by ncp_model, the
component that manages, stores, and distributes the discovered network topology.

The ncp_disco component and ncp_model component store configuration,
management, and operational information in databases. You can interrogate these
databases by logging into the DISCO or MODEL service using the OQL Service
Provider.

The ncp_disco databases can either be active or passive. When data is inserted into
an active database, an action is automatically triggered; for example, another table
is populated with data, or a script or stitcher is launched.
Related concepts:
“Filters” on page 5
Use prediscovery filters to increase the efficiency of discovery and post-discovery
filters to prevent instantiation of devices.
Related tasks:
“Setting discovery filters” on page 28
Use filters to filter out devices either before discovery or after discovery. You can
filter out devices based on a variety of criteria, including location, technology, and
manufacturer. Filters provide additional restrictions to those defined in the scope
zones.
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.

Discovery engine database
Use the Discovery engine (ncp_disco) database to configure the general options for
the discovery process, and to track the discovery process.

The Discovery engine database, disco, is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. Its fully qualified database table names are: disco.config;
disco.managedProcesses; disco.status; disco.agents; disco.NATStatus.

disco.config table
The config table configures the general operation of the discovery process.

Table 30. disco.config database table schema

Column name Constraints Data type Description

m_NothngFndPeriod Float The maximum time lapse, in seconds, between
the discovery of one device and the discovery
of the next device in the device discovery
phase.

m_PendingPerCent Integer The maximum allowed ratio of pending
devices to processing devices. A breach of this
threshold condition instigates a full discovery
(rather than a partial rediscovery).

© Copyright IBM Corp. 2006, 2013 183

Table 30. disco.config database table schema (continued)

Column name Constraints Data type Description

m_CycleLimit Integer The number of discovery cycles to complete
before instigating a full rediscovery (used by
the FinalPhase stitcher).

m_RestartAgents Integer A flag that determines whether DISCO
attempts to restart discovery agents that fail
during their operation.

m_RestartFinders Integer Flag to determine whether to restart a failed
finder.

m_DirScanIntvl Integer The time period between scans for
modifications to the stitcher and agent files.

If changes are found, the stitcher and agent
definitions are loaded and the appropriate
changes are made to the stitchers and agents.

m_WriteTablesToCache Externally
defined
Boolean data
type

Boolean
Integer

Flag indicating whether to write a cache of the
Discovery engine, ncp_disco, tables to disk.
Note: Setting this flag results in discoveries
that are slower than a standard discovery.

v 1: Write cache of ncp_disco tables to disk.
The tables that are defined in the failover
database are cached and ncp_disco can be
restarted at any point.

v 0: Do not write cache of ncp_disco tables to
disk. No tables are cached during the
discovery and ncp_disco ignores any
existing cache files if it is restarted.

m_MinResidentSize Integer The minimum initial size of DISCO in
kilobytes (KB). The maximum value that you
can specify is 500 MB (512 000 KB).

Specifying an initial value speeds up the
discovery by allocating the memory of DISCO
in one block.

m_UseContext Boolean
Integer

Flag indicating whether this is a
context-sensitive discovery.

v 1: Specifies a context-sensitive discovery.

v 0: Specifies that this is not a
context-sensitive discovery.

m_RebuildLayers Externally
defined
Boolean data
type

Boolean
Integer

Flag indicating whether to rebuild topology
layers after partial rediscovery.

v 1: Rebuild the layers. After partial
rediscovery, topology layers stitchers are
run. Partial rediscovery takes longer but
results in a complete topology.

v 0: Do not rebuild the layers. After partial
rediscovery, topology layers stitchers are not
run. The result is a much quicker partial
discovery; however, connectivity associated
with the newly discovered device is not
fully seen in the topology.

184 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 30. disco.config database table schema (continued)

Column name Constraints Data type Description

m_DiscoProfiling Boolean
Integer

Flag indicating whether to profile the
discovery.

v 1: Profile the discovery.

v 0: Do not profile the discovery.

m_ModelVlans Externally
defined
Boolean data
type

Boolean
Integer

Flag indicating whether to switch off VLAN
modelling.

1: This setting switches on VLAN modelling.
When you make this setting, the
AddGlobalVlans, CreateTrunkConnections and
AddVlanContainers stitchers are called.

0: This setting switches off VLAN modelling.
When you make this setting, the
AddGlobalVlans, CreateTrunkConnections and
AddVlanContainers stitchers are not called.

m_DisplayMode Integer Specifies how the display label used for GUI
network and network hop views should be
populated for main nodes.

v 0 - Use Entity Name (default)

v 1 - Use SysName. This option is useful
when it is not desirable to name entities by
sysName in the database (see
m_UseSysName) but it is desirable to have
the entities displayed in the GUI views with
a sysName.

m_RTBasedVPNs Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating which type of MPLS discovery
to perform.

v 1: Set this value to select route target
(RT)-based MPLS discovery. In this type of
discovery, no label data is required, so the
discovery is faster. The MPLS core view
consists of all MPLS-enabled devices.

v 0: Set this value to select label switch path
(LSP)-based MPLS discovery. In this type of
discovery, label data is discovered as this
data is required in order to trace LSPs. The
MPLS core view shows provider edge (PE)
routers and provider (P) routers retrieved
by tracing the label switched paths within
the VPNs in scope.

m_UseIfName Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating which naming strategy to use
when building interfaces.

v 1: This setting indicates that you want to
use ifName or ifDescr to name the
interfaces rather than their ifIndex, card or
port information.

v 0: This setting indicates that you want to
use the default naming convention for any
device interface:

baseName[<card>[<port>]

Appendix A. Discovery databases 185

Table 30. disco.config database table schema (continued)

Column name Constraints Data type Description

m_UseSysName Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating which naming strategy to use
when naming devices.

v 1: This setting indicates that you want to
name devices using the value of the SNMP
sysName variable as the main source of
naming information. The sysName variable
must be set and must be unique within the
network.

v 0: This setting indicates that you do not
want to name devices using the value of the
SNMP sysName variable as the main source
of naming information.

m_CheckFileFinderReturns Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating whether to use the Ping finder
to check the devices specified in the flat file
supplied to the File finder.

v 1: This setting tells the Ping finder to check
the devices specified in the flat file supplied
to the File finder. This setting is
recommended if you have reason to doubt
that some of the devices specified in the flat
file are still connected to the network.

v 0: This setting indicates that you do not
want to perform any checking of the
devices specified in the flat file supplied to
the File finder.

m_InferCEs Externally
defined
Boolean data
type

default = 0

Boolean
Integer

Flag indicating whether to infer the existence
of customer-edge (CE) routers. When enabled,
DISCO creates a CE router entity for each
provider-edge (PE) router interface that is on a
/30 subnet and does not have CE information
from another source.

v 1: This setting tells DISCO to infer the
existence of CE routers.

v 0: This setting tells DISCO not to infer the
existence of CE routers.

186 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 30. disco.config database table schema (continued)

Column name Constraints Data type Description

m_FeedbackCtrl Default = 0 Integer Flag indicating whether to use the feedback
mechanism during the discovery. The feedback
mechanism allows any new IP addresses to be
fed back into the discovery and thus increases
the size of the discovered network. Devices
that are fed back are pinged by the Ping
finder.
Note: For feedback to work the ping finder
must be activated.

v 0: Feedback is off for all discoveries and
rediscoveries. This option provides speed
but discovers only those devices specified to
the finders, and hence provides an
incomplete topology. However, this setting
ensures that discoveries and rediscoveries
complete in the quickest possible time.

v 1: Feedback is on for full discoveries, full
rediscoveries, and partial rediscoveries. All
IP addresses are pinged. This option
provides a complete topology in all
situations but takes the longest.

v 2: Feedback is on for full discoveries and
full rediscoveries, this ensuring a complete
topology in these cases. In the case of
partial rediscoveries there is no feedback.
This ensures that the partial rediscovery
runs in the quickest time possible. This is
the default setting.

m_AllowVirtual Default = 0 Integer Flag indicating whether to allow virtual IP
addresses as part of the discovery.

v 0: Do not perform any discovery for virtual
IP addresses.

v 1: Perform discovery for virtual IP
addresses. This is the default setting.

v 2: Perform discovery for virtual IP
addresses only if the address is defined in
the scope.special table. This table defines
management IP addresses.

m_PingVerification Default = 2 Integer Option to check whether an interface is able to
be pinged. If the device is not pingable, then
Network Manager does not poll the device for
alerts

v 0: Do not check pingability: Network
Manager performs no pingability check on
any of the interfaces discovered. Interfaces
will be polled regardless of whether they
are pingable at discovery time.

v 1: Check pingability: perform a pingability
check, following discovery, for every
interface discovered.

v 2: Determine best method: sets the
pollability flag for an interface based on
whether feedback was active during the
discovery..

Appendix A. Discovery databases 187

Table 30. disco.config database table schema (continued)

Column name Constraints Data type Description

m_CreateStchrEvents Externally
defined
Boolean data
type

default = 1

Boolean
Integer

Specifies whether to create discovery events to
be sent to the ObjectServer. This field takes the
following values:

v 0: Do not generate discovery events.

v 1: Generate discovery events.

m_RTVPNResolution Integer Specifies whether to apply fine control over
Layer 3 VPN resolution and naming in a route
target-based discovery:

v 1: Use route target (default).

v 2: Use VRF.

m_InferPEsUsingBGP Boolean
Integer

Specifies whether to infer the existence of
provider-edge (PE) routers using BGP
information on customer-edge (CE) routers:

v 0: Do not infer PEs.

v 1: Infer PEs.

m_BuildLogicalCollections Boolean
Integer

Specifies whether to build logical collection
entities to group together items such as VTP
domains, OSPF areas, and MPLS VPNs:

v 0: Do not build logical collection entities.

v 1: Build logical collection entities.

m_InferDumbHubs Boolean
Integer

Specifies whether to infer the existence of
dumb hubs on your network:

v 0: Do not infer the existence of dumb hubs.

v 1: Infer the existence of dumb hubs.

m_RediscoverRelatedDevices Boolean
Integer

In a partial rediscovery when a device has
changed, specifies whether to rediscover the
related devices if the connection appears to
have changed:

v 0: Do not rediscover the related devices if
the connection appears to have changed.

v 1: Rediscover the related devices if the
connection appears to have changed.

m_DiscoOnStartup Boolean
Integer

Specifies whether a discovery should
automatically start when the Discovery engine,
ncp_disco, is started:

v 0: Do not automatically start a discovery.

v 1: Automatically start a discovery.

m_FindersOnStartup Boolean
Integer

Specifies whether the finders should
automatically start when the Discovery engine,
ncp_disco, is started :

v 0: Do not automatically start finders.

v 1: Automatically start finders.

188 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 30. disco.config database table schema (continued)

Column name Constraints Data type Description

m_SubnetFiltering Integer Alters which interfaces are included in
subnet-based connections:

v 0: No filtering

v 1: Filter out VRF interfaces (consider using
m_VpnASTagging instead of this mode as it
improves connectivity in all layers rather
than just layer 3).

v 2 - Filter out in-scope interfaces known to
hold inaccessible duplicate IPs.

v 3 - Automatic. Decides best approach based
on other configuration options.

m_VerifyCDPUsingDeviceId Boolean
Integer

Specifies whether to verify the CDP links
using the CDP device ID. Occasionally the
CDP device ID has been found to be
unreliable. Switching on
m_VerifyCDPUsingDeviceId will improve CDP
connectivity if the Device ID is accurate but
might degrade connectivity if the Device ID is
inaccurate.

v 0: Do not verify the CDP links using the
CDP device ID.

v 1: Verify the CDP links using the CDP
device ID.

m_UseIfIndex Boolean
Integer

Specifies whether to name interfaces using the
ifIndex only. This setting overrides the
m_UseIfName setting.

v 0: Do not name interfaces using the ifIndex
only.

v 1: Name interfaces using the ifIndex only.

m_AddIntDisplayLabel Boolean
Integer

Specifies whether to add an interface display
label:

v 0: Do not add an interface display label.

v 1: Add an interface display label.

m_Use_dNCIM Boolean
Integer

By default this field is set to 0.
Important: Do not change the value of this
field. Leave it at the default 0 setting.This field
is part of the dNCIM technology preview. For
more information on the dNCIM technology
preview contact IBM Support.

m_VpnASTagging Integer Specifies whether CE facing PE interfaces
should be assigned to a private address space:

v 0: Do not assign.

v 1: Assign.

v 2: Automatic. Decides the best approach
based on other configuration options.

Appendix A. Discovery databases 189

Table 30. disco.config database table schema (continued)

Column name Constraints Data type Description

m_RefreshDiscovery Default = 0 Boolean
Integer

Specifies whether or not the FullDiscovery
stitcher restarts the discovery when called
after an initial full discovery has completed.
The default value is 0: not to restart the
discovery process. Set the value to 1 to restart
the discovery process using the
RestartDiscoProcess.stch stitcher.

Enabling this option can be useful if the
discovery is loading custom data into the
DiscoContrib.cfg file. The new discovery
process reads the file again. It can also help if
the discovery process is accumulating memory
because the newly started process resets the
process to the initial state.
Note: Even when enabled, the FullDiscovery
stitcher only stops and starts the discovery
process if there is no discovery in progress at
the time it is called.

Related tasks:
“Defining the scope of an MPLS/VPN discovery” on page 113
When configuring the discovery of one or more Virtual Private Networks (VPNs)
running across an MPLS core, you can restrict the scope of this discovery to a
particular VPN name or VPN Routing and Forwarding (VRF) table name.
Related reference:
“DiscoConfig.cfg configuration file” on page 63
The DiscoConfig.cfg configuration file is used to have the Ping finder automatically
check the devices discovered by the File finder, and to enable a context-sensitive
discovery.

disco.managedProcesses table
The managedProcesses table is a repository for all the subprocesses managed by
DISCO, such as the finders. Provided that CTRL is running, processes that are
inserted into this table are started and managed by DISCO.

Table 31. disco.managedProcesses database table schema

Column name Constraints Data type Description

m_Name v PRIMARY KEY

v UNIQUE

v NOT NULL

Text The name of the process to be
managed.

m_Args List of text A list of command-line arguments sent
to the executable.

m_Host Text The name of the host on which to run
the executable.

m_LogFile Text The name of the log file to which
output is written.

190 IBM Tivoli Network Manager IP Edition: Discovery Guide

disco.status table
Use the disco.status table to monitor the progress of the ncp_disco process during
the discovery process.

Attention: The disco.status table is used and updated internally, and you must
not make inserts into this table.

Table 32. disco.status database table schema

Column name Constraints Data type Description

m_DiscoveryMode Integer The present discovery mode:

v 0: Full discovery

v 1: Partial discovery

m_Phase Integer The current phase within the
present discovery cycle. During
the data collection stage, the
phases are as follows:

v 0: The discovery has not yet
started.

v 1: The main discovery phase in
which device data is retrieved.
Most discovery agents complete
in this phase.

v 2 - n: The phases in which the
topology data is retrieved for
the currently discovered objects.
The number of phases required
depends on how your discovery
is configured. By default, in a
layer 2 discovery, phase 2
consists of the retrieval of IP to
MAC address translations and
phase 3 consists of the retrieval
of Ethernet switch topology
information.

During the data processing
stage, the following phase is
undertaken.

v 3: The phase in which the
collected data is processed; the
layers are built and the data is
sent to MODEL.

More detailed information about
the discovery phases can be found
in “Discovery stages and phases”
on page 280.

m_BlackoutState Externally
defined
Boolean data
type

Boolean
Integer

Flag to show if the discovery
process is in Blackout mode, that
is, whether or not DISCO is
accepting new devices from the
finders in the current discovery
cycle:

v 0: False (accepting new devices)

v 1: True (not accepting new
devices)

Appendix A. Discovery databases 191

Table 32. disco.status database table schema (continued)

Column name Constraints Data type Description

m_CycleCount Integer Current® rediscovery cycle, that is,
the current number of cycles
DISCO has been through without
actually building a topology.

In rediscovery mode, DISCO only
builds a topology at the end of the
last cycle (the last cycle is
determined by the fact that there
is nothing left in finders.pending
awaiting processing).

m_ProcessingNeeded Externally
defined
Boolean data
type

Boolean
Integer

Flag to indicate whether the
current topology needs
reprocessing. This flag is checked
when DISCO is in rediscovery
mode in order to determine
whether any newly found devices
(that are now in the
finders.pending table) necessitate
the reprocessing of the entire
topology:

v 0: The topology does not need
reprocessing

v 1: The topology needs
reprocessing

m_FullDiscovery Externally
defined
Boolean data
type

Boolean
Integer

Flag to indicate that the
FullDiscovery.stch stitcher has
been called during the discovery.

If the stitcher is called, the flag is
set to 1 to ensure that the
FullDiscovery.stch stitcher is
executed when the current
discovery finishes (thus starting
another full discovery).

If the flag is set to any other
value, no action is taken.

m_DiscoveryCycle
Requested

Externally
defined
Boolean data
type

Boolean
Integer

Flag to indicate that a discovery
has been requested by the GUI.

m_DiscoveryCycle
RequestTime

Integer The time that the discovery was
requested, in Unix time.

192 IBM Tivoli Network Manager IP Edition: Discovery Guide

disco.agents table
The agents table specifies the discovery agents that DISCO uses for the discovery.
Every agent that you want to run must have an insertion into the disco.agents
table within the DiscoAgents.cfg configuration file that enables that agent (set
m_Valid=1). If m_Valid=0, the agent is not run.

Table 33. disco.agents database table schema

Column name Constraints Data type Description

m_AgentName v PRIMARY
KEY

v UNIQUE

v NOT NULL

Text The unique name of the discovery agent.

m_Valid Integer A flag determining whether or not the
discovery agent is to be used:

v (1) Run the discovery agent

v (0) Do not run the discovery agent

m_AgentClass Integer The category to which the current
discovery agent belongs:

v (0) Routing agent

v (1) Switch agent

v (2) Hub agent

v (3) ILMI agent

v (4) FDDI agent

v (5) PNNI agent

v (6) Frame Relay agent

v (7) CDP agent

v (8) NAT agent

m_IsIndirect Integer A flag indicating the type of connectivity
information returned by the discovery
agent:

v (0) Direct connectivity; for example,
Routing agents

v (1) Indirect connectivity information;
for example, Switch agents

m_Precedence Integer An integer representation of the
precedence level of the information
returned by the discovery agent; the
higher the integer, the higher the
weighting given to the information
returned.

The precedence is only used when there
is a conflict when merging device
information to produce the
workingEntities.finalEntity database
table.

m_HostName Text The name of the host machine on which
to run the agent.

m_DebugLevel Integer The level of debugging for the agent.

m_LogFile Text The text file to which debugging output
is written.

Appendix A. Discovery databases 193

Table 33. disco.agents database table schema (continued)

Column name Constraints Data type Description

m_NumThreads Integer The number of threads this agent runs. If
not specified, the default number is 10;
the maximum allowed is 900.

m_ValidOnPartial Integer Specifies whether the agent is to be used
on a partial discovery:

v 0: Agent is not to be used in a partial
discovery.

v 1: Agent is to be used in a partial
discovery.

m_MessageLevel Text Specifies the message level (the default is
warn). Options include:

v debug

v info

v warn

v error

v fatal

The disco.agents table also indicates agent precedence, which can be used when
merging device information to produce the workingEntities.finalEntity table.
Precedence determines which records are used when duplicate or conflicting
records are reported by different discovery agents.

The following precedence applies:
v The Details agent has the lowest precedence because it is designed to retrieve

only basic device information.
v Routing agents have the next highest precedence. Their connectivity information

is at the IP layer only, however, so it is not as accurate as that returned by the
switching agents.

v Switching agents have next-highest precedence because they can return
information on the media layer (layer 2), which is more accurate than layer 3
information.

194 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“Discovery agent definition files” on page 50
The discovery agent definition files define the operation of the discovery agents.
“DiscoAgents.cfg configuration file” on page 53
The DiscoAgents.cfg configuration file defines which agents run during a
discovery.

disco.NATStatus table
The NATStatus table, is used to configure the discovery system to use NAT.

Table 34. disco.NATStatus database table schema

Column name Constraints Data type Description

m_UsingNAT v UNIQUE

v NOT
NULL

Boolean integer This column must be set to indicate
whether the discovery uses multiple
address spaces. Set this value to:

v 1, if the discovery uses multiple
address spaces.

v 0, if the discovery does not use
multiple address spaces.

m_NATStatus v UNIQUE

v NOT
NULL

Integer This column is populated automatically
by the discovery process, and can be
used to track the process of a NAT
discovery. If making inserts into this
table, this column must be set to 0.
Possible values are:

v 0: Uninitialized

v 1: Seeded discovery with gateways

v 2: Awaiting gateway returns

v 3: Processing NAT translations

v 4: NAT translations complete

disco.dynamicConfigFiles table
The dynamicConfigFiles table stores the names of configuration files that must be
reread each time a full discovery is launched.

Table 35. disco.dynamicConfigFiles database table schema

Column name Constraints Data type Description

m_Name Primary key

Not null

Text Name of configuration file to be reread,

m_UpdTime Timestamp Last update time for this configuration file.

Appendix A. Discovery databases 195

disco.tempData table
The tempData table is used by the discovery profiling stitchers to record the time
and memory expended to perform the discovery.

Table 36. disco.tempData database table schema

Column name Constraints Data type Description

m_Phase1TmpTime Integer Time taken by phase 1 of the discovery, also
known as the Interrogating Devices phase.

m_Phase2TmpTime Integer Time taken by phase 2 of the discovery, also
known as the Resolving Addresses phase.

m_Phase3TmpTime Integer Time taken by phase 3 of the discovery, also
known as the Downloading Connections phase.

m_ProcPhaseTmpTime Integer Time taken by phase -1, the data processing
phase of the discovery, also known as the
Correlating Connections phase.

m_Phase1TmpMem 64-character string Memory used during phase 1 of the discovery.

m_Phase2TmpMem 64-character string Memory used during phase 2 of the discovery.

m_Phase3TmpMem 64-character string Memory used during phase 3 of the discovery.

m_ProcPhaseTmpMem 64-character string Memory used during phase -1 of the discovery.

disco.profilingData table
The profilingData table is used by the discovery profiling stitchers to record data
associated with time and memory expended during the discovery.

Table 37. disco.profilingData database table schema

Column name Constraints Data type Description

m_Phase1StartTime Integer Time that phase 1 of the discovery started.
Phase 1 is also known as the Interrogating
Devices phase.

m_Phase2StartTime Integer Time that phase 2 of the discovery started.
Phase 2 is also known as the Resolving
Addresses phase.

m_Phase3StartTime Integer Time that phase 3 of the discovery started.
Phase 3 is also known as the Downloading
Connections phase.

m_ProcPhaseStartTime Integer Time that phase -1, the data processing phase of
the discovery started. Phase -1 is also known as
the Correlating Connections phase.

m_CompletionTime Integer Time that phase -1 completed.

m_Phase1StartMem 64-character string Memory used when phase 1 of the discovery
started.

m_Phase2StartMem 64-character string Memory used when phase 2 of the discovery
started.

m_Phase3StartMem 64-character string Memory used when phase 3 of the discovery
started.

m_ProcPhaseStartMem 64-character string Memory used when phase -1 of the discovery
started.

m_CompletionMem 64-character string Memory used when phase -1 of the discovery
completed.

196 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 37. disco.profilingData database table schema (continued)

Column name Constraints Data type Description

m_NumFinderInserts Integer Total number of finder inserts during the
discovery.

m_NumDetailsReturns Integer Total number of details table returns during the
discovery.

m_NumMainNodes Integer Total number of main nodes discovered.

m_NumMainNodesWithAccess Integer Total number of main nodes with no SNMP
access discovered.

m_NumIPs Integer Total number of IP addresses discovered.

m_NumSwitches Integer Total number of switches discovered.

m_NumRouters Integer Total number of routing devices discovered.

m_NumEntities Integer Total number of entities in the scratchTopology
database.

m_SoftwareVersion Text Software version used.

m_DiscoveryMode Integer Type of discovery:

v 0: Full discovery

v 1: Partial discovery

disco.events table
The events table constrains discovery events generated to a standard format. An
event is generated by inserting a record into this table.

Table 38. disco.events database table schema

Column name Constraints Data type Description

m_EventName Not null Text The name of the event.

m_EntityName Not null Text The name of the entity on which the event
occurred.

m_EventType Not null Integer This field can take one of the following values:

v 1: Problem

v 2: Resolution

v 13: Informational

m_Severity Not null Integer This field can take one of the following values:

v 0: CLEAR

v 1: INDETERMINATE

v 2: WARNING

v 3: MINOR

v 4: MAJOR

v 5: CRITICAL

It is possible to define more values.

m_Description Not null Text Description of the discovery event

m_ExtraInfo Externally
defined vblist
data type

Specifies a list of additional information.

Appendix A. Discovery databases 197

Related concepts:
“Process flow for creating discovery events” on page 164
Discovery events are created during the discovery process showing the progress of
agents, stitchers, and finders. These events are sent to and stored in Tivoli
Netcool/OMNIbus and can be viewed using the Web GUI.

disco.ipCustomTags table
The ipCustomTags table stores custom tags, which can be associated with unique
discovered entities during the discovery and used to perform custom visualization
and polling tasks.

Table 39. disco.ipCustomTags database table schema

Column name Constraints Data type Description

m_UniqueAddress Not null Text IP address to which the name-value pair tags
in the m_CustomTags is to be associated to.

m_StitcherTagName Not null Text Name of a tag to be evaluated using the
GetTagStitcher.stch stitcher.

m_CustomTags Not null Object type
vblist

List of name-value pair tags.

Related tasks:
“Adding tags to entities using custom tag tables” on page 173
You can add name-value pair tags to entities by creating inserts containing the
name-value pair data into the disco.ipCustomTags table or into the
disco.filterCustomTags table.

disco.filterCustomTags table
The filterCustomTags table stores custom tags, which can be associated with a
filtered set of discovered entities during the discovery and used to perform custom
visualization and polling tasks.

Table 40. disco.filterCustomTags database table schema

Column name Constraints Data type Description

m_Filter Not null Text Filter definition that extracts a set of IP
address to which the name-value pair tags in
the m_CustomTags is to be associated to. You
can create a filter based on any attributes
associated with discovered entities. For
example, you could apply the following filters:

v Filter based on entity IP address:
"m_UniqueAddress LIKE ’172.20.3’"

v Filter based on entity name: "m_Name LIKE
’lon’"

v Filter based on VLAN identifier of a VLAN
entity: "m_LocalNbr->m_VlanID = 102"

m_StitcherTagName Not null Text Name of a tag to be evaluated using the
GetTagStitcher.stch stitcher.

m_CustomTags Not null Object type
vblist

List of name-value pair tags.

198 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related tasks:
“Adding tags to entities using custom tag tables” on page 173
You can add name-value pair tags to entities by creating inserts containing the
name-value pair data into the disco.ipCustomTags table or into the
disco.filterCustomTags table.

Example configuration of the disco.config table
This example uses OQL commands to insert configuration values into the
disco.config table.
v The maximum period between device discovery is 300 seconds. This condition

and the next condition must be satisfied in order to proceed to the next phase of
the discovery cycle.

v The maximum allowable ratio of pending to processing devices is 20 percent. If
this threshold is breached, a full discovery is instigated.

v The cycle limit is 5, which means that a maximum of five discovery cycles are
necessary to complete the discovery process. If there are more than 5 discovery
cycles, a full rediscovery is initiated.

v The agent restart flag is 1, which means that DISCO is mandated to restart any
discovery agent that fails in its operation.

v The finder restart flag is 1, which means that DISCO is mandated to restart any
finder that fails in its operation.

v Scans for updates to the agents and stitchers have been disabled. This is usually
the case when you do not wish to alter the discovery data flow.

v Do not write a cache of the Discovery engine, ncp_disco, tables to disk.
insert into disco.config
(

m_NothngFindPeriod,
m_PendingPerCent,
m_CycleLimit,
m_RestartAgents,
m_RestartFinders,
m_DirScanIntvl
m_WriteTablesToCache

)
values
(

300,
20,
5,
1,
1,
0,
0

);

Example configuration of the disco.managedProcesses table
This example uses OQL commands to insert configuration values into the
disco.managedProcesses table. If the CTRL program is running, you can configure,
launch, and manage the File finder and Ping finder subprocesses.
insert into disco.managedProcesses
(

m_Name, m_Args, m_Host
)
values
(

"ncp_df_file", [], "othello"
);

Appendix A. Discovery databases 199

insert into disco.managedProcesses
(

m_Name, m_Args, m_Host
)
values
(

"ncp_df_ping", [], "othello"
);

Example configuration of the disco.agents table
This example uses OQL commands to insert configuration values into the
disco.agents table.
v The ArpCache discovery agent is enabled to run during the discovery

(m_Valid=1), belongs to the routing class (m_AgentClass=0), returns direct
connectivity information (m_IsIndirect=0) and has a precedence level of 2.

v The AtmForumPnni discovery agent is disabled for this discovery (m_Valid=0),
belongs to the PNNI class (m_AgentClass=5), returns direct connectivity
information (m_IsIndirect=0) and has a precedence level of 5.

v The BayEthernetHub discovery agent is disabled for this discovery (m_Valid=0),
belongs to the hub class (m_AgentClass=2), returns indirect connectivity
information (m_IsIndirect=1) and has a precedence level of 3.

insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)
values
(

’ArpCache’, 1, 0, 0, 2
);

insert into disco.agents
(

m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence
)
values
(

’AtmForumPnni’, 0, 5, 0, 5
);

insert into disco.agents

(
m_AgentName, m_Valid, m_AgentClass, m_IsIndirect, m_Precedence

)
values
(

’BayEthernetHub’, 0, 2, 1, 3
);

200 IBM Tivoli Network Manager IP Edition: Discovery Guide

Discovery scope database
The scope database limits the extent or reach of a discovery. Using the scope
database, you can configure a range of protocols and attributes that define zones
that are to be included or excluded from the discovery process.

The range of IP addresses and devices that can potentially be considered by the
discovery process is unlimited, so unless you restrict the scope of the discovery,
ncp_disco would eventually attempt to discover the entire Internet.

For example, you can specify that sensitive devices not be discovered and
consequently not be instantiated. A sensitive device is one that you do not want to
poll. This might be because there is a security risk involved in polling the device,
or that polling might overload device.
Related reference:
“DiscoScope.cfg configuration file” on page 64
The DiscoScope.cfg configuration file can be used to configure the scope of a
discovery.

disco.scope database schema
The scope database is defined in $NCHOME/etc/precision/DiscoSchema.cfg and
$NCHOME/etc/precision/DiscoScope.cfg. Its fully qualified database table names
are: scope.zones; scope.detectionFilter; scope.instantiateFilter; scope.special.

scope.detectionFilter table
If you specify a filter in the detectionFilter table, only devices matching it are
discovered. Because the m_Protocol column must be unique, there must be only
one insert into this table for any given protocol. Multiple filters must be defined
within a single insert.

Table 41. scope.detectionFilter database table schema

Column
name Constraints Data type Description

m_Protocol v PRIMARY KEY

v UNIQUE

v NOT NULL

v Externally
defined
netProtocol
data type

Integer An integer representation of network
protocol used by the presently defined
zone. Currently only IP is supported:

v 0: Undefined

v 1: IP

m_Filter Text A textual representation of an attribute
filter against the columns of the
Details.returns table; for example,
m_UniqueAddress or m_ObjectId.

Although you can configure the filter condition to test any of the columns in the
Details.returns table, you might need to use the IP address as the basis for the filter
if you need to restrict the detection of a particular device. If the device does not
grant SNMP access to the Details agent, the Details agent might not be able to
retrieve MIB variables such as the Object ID. However, you are guaranteed the
return of at least the IP address when the device is detected.

Appendix A. Discovery databases 201

inferMPLSPEs table
Use the inferMPLSPEs table when enabling inference of inaccessible provider-edge
(PE) devices by using the BGP data on the customer-edge (CE) devices. This table
enables you to optionally specify which zones to process to determine which of the
inferred PE devices are valid devices.

To specify which zones to process to determine which of the inferred PE devices
are valid devices populate the scope.inferMPLSPEs table, using standard format
scope entries, as in the scope.zones table. Use this option when you have
inaccessible devices that are connected by means of BGP but which are not actually
PE devices.

If the following conditions are true, then the system creates a “third-party”
network object to model this inaccessible provider network.
v A router is within this scope
v The router has BGP peers outside the discovered network
v m_InferMPLSPEsUsingBGP is on. This can also be defined using the Advanced

tab on the Discovery Configuration GUI.

Table 42. scope.inferMPLSPEs database table schema

Column name Constraints Data type Description

m_Protocol v PRIMARY KEY

v NOT NULL

v Externally
defined
netProtocol
data type

Integer An integer representation of the
network protocol used by the
presently defined zone. Currently
only IP is supported:

v 0: Undefined

v 1: IP

m_Action v NOT NULL

v Externally
defined
filtAction data
type

Integer Action to perform for current zone:

v 0: Undefined

v 1: Include

v 2: Exclude

m_Zones NOT NULL List of type
zone

A list of varbinds (name=value)
that define the present discovery
zone.

Only process interfaces in the 199.220.* network

The following example shows how to instruct the system to only process interfaces
in the 199.220.* network.
insert into scope.inferMPLSPEs
(

Protocol,
m_Action,
m_Zones

)
values
(

1,
1,
[{ m_Subnet = "199.220.*" }]

//);

202 IBM Tivoli Network Manager IP Edition: Discovery Guide

scope.instantiateFilter table
When you specify a filter in the instantiateFilter table, only devices that pass the
criteria are instantiated, that is, sent to MODEL. If no filter is specified, all
discovered devices are instantiated.

Note that because the m_Protocol column must be unique, there must be only one
insert into this table for any given protocol. Multiple filters must be defined within
a single insert.

Table 43. scope.instantiateFilter database table schema

Column name Constraints Data type Description

m_Protocol v PRIMARY KEY

v UNIQUE

v NOT NULL

v Externally
defined
netProtocol
data type

Integer An integer representation of the network
protocol used by the presently-defined
zone. Currently only IP is supported:

v 0: Undefined

v 1: IP

m_Filter Text A textual representation of an attribute
filter against the columns of the
scratchTopology.entityByName table; for
example, EntityOID or Address.

mplsTe table
The mplsTe table defines the scope of MPLS Traffic Engineered (TE) tunnel
discovery, and defines what information is retrieved.

The following table shows the schema of the scope.mplsTe table.

Table 44. scope.zones database table schema

Column name Constraints Data type Description

m_Protocol v NOT NULL

v Externally
defined
netProtocol
data type

Integer An integer representation of the
network protocol used by the
presently defined zone. The
following values are possible:

v 0: Undefined

v 1: Internet Protocol (IP)

v 2: Network Address Translation
(NAT)

v 3: IPv6

m_Zones NOT NULL List of type
zone

Defines the scope in which the
tunnel heads will be discovered

m_AddressSpace Text Optional address space

Appendix A. Discovery databases 203

Table 44. scope.zones database table schema (continued)

Column name Constraints Data type Description

m_Mode Integer The TE tunnel discovery mode
defines what information is
retrieved. Possible values are:

v 0: Unknown (not set)

v 1: Tunnel Head/Tail with Transit
Hop List

v 2: Tunnel Head/Tail (No Hop
List)

v 3: Tunnel Head, Tails, and Transit
devices

m_TunnelFilter Integer The TE tunnel filter. Possible values
are:

v 0: Unknown (not set)

v 1: Include tunnels with this head

v 2: Exclude tunnels with this head

Related tasks:
“Configuring the StandardMPLSTE agent” on page 112
Configure which tunnels to discover, and what details to retrieve.

scope.multicastGroup table
The scope.multicastGroup table defines which multicast groups to discover and
which details to retrieve from these groups.

The following table shows the schema of the scope.multicastGroup table.

Table 45. scope.multicastGroup database table schema

Column name Constraints Data type Description

m_AddressSpace Text Optional address space

m_GroupName Text Descriptive name for a group

m_Groups Not null list type zone Zones defines the multicast
subnets to which the scope
options apply

m_IGMPMode Integer IGMP Group discovery mode

v 0 - unknown (use default)

v 1 - Include group

v 2 - Exclude group

m_IPMRouteMode Integer IP Multicast Route Group
discovery mode:

v 0 - unknown (use default)

v 1 - Include group

v 2 - Exclude group

204 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 45. scope.multicastGroup database table schema (continued)

Column name Constraints Data type Description

m_PimMode Integer The PIM multicast discovery
mode defines what information is
retrieved. Possible values are:

v 0: Unknown (use default)

v 1: Retrieve PIM group data

v 2: Do not retrieve PIM group
data. Groups with this option
applied will not be represented
in the PIM Service/End Point
data.

m_Protocol v NOT NULL

v Externally
defined
netProtocol
data type
(Currently
IPv4 [1] only)

Integer An integer representation of the
network protocol used by the
presently defined group. The
following values are possible:

v 0: Undefined

v 1: IP

v 2: NAT

v 3: IPv6

Related tasks:
“Configuring a multicast discovery” on page 34
Configure a multicast discovery by enabling the required agents and scoping the
discovery.

scope.multicastSource table
The scope.multicastSource table defines which IPM routes to discover. This is
particularly useful if you have multiple IPM route sources, since you can scope
multicast discovery by IPM route source to focus on the sources of interest.

The following table shows the schema of the scope.multicastSource table.

Table 46. scope.multicastSource database table schema

Column name Constraints Data type Description

m_Protocol v NOT NULL

v Externally
defined
netProtocol
data type

Integer An integer representation of the
network protocol used by the
presently defined group. The
following values are possible:

v 0: Undefined

v 1: IP

v 2: NAT

v 3: IPv6

m_Source NOT NULL list type zone The multicast source to be
included or excluded

Appendix A. Discovery databases 205

Table 46. scope.multicastSource database table schema (continued)

Column name Constraints Data type Description

m_IPMRouteMode Integer An integer representation of the
network protocol used by the
presently defined group. The
following values are possible:

v IP Multicast Route Source
discovery mode

v 0 - unknown (use default)

v 1 - Include Source

v 2 - Exclude Source

m_Groups list type zone The multicast group subnets to
which the source scope option
applies

Related tasks:
“Configuring a multicast discovery” on page 34
Configure a multicast discovery by enabling the required agents and scoping the
discovery.

scope.special table
The special table defines management IP addresses. A management address is an
IP address on a device whose only role is to manage the device. Management
addresses do not handle network traffic.

Table 47. scope.special database table schema

Column name Constraints Data type Description

m_Zones NOT NULL List of type
zone

A list of varbinds
(name=value) that define
the present discovery
zone. This takes the form
of a list of subnet IP
addresses and subnet.

m_AddressSpace Text Optional address space
identifier for a particular
scope entry.

m_Protocol Integer Protocol of the network.
Takes one of the following
values:

v 0: Undefined

v 1: IP

v 2: NAT

v 3: IPv6

m_OutOfBand Int Type
Boolean

Indicates whether the
management area is out
of band. Takes one of the
following values:

v 0: in band

v 1: out of band

m_IsManagement Int Type
Boolean

Indicates whether the
address is a management
address.

206 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 47. scope.special database table schema (continued)

Column name Constraints Data type Description

m_IsValidVirtual Int Type
Boolean

Indicates whether the
address is a valid virtual
IP.

scope.zones table
Use the zones table to define areas of the network to be either included or
excluded from the discovery process. A zone is typically defined as a list of
varbinds. Varbinds are name = value pairs.

You can define multiple zones, and you can combine inclusion and exclusion
zones. However, if you define a combination of inclusion and exclusion zones, the
exclusion zones must be within the scope of the inclusion zones.

Table 48. scope.zones database table schema

Column name Constraints Data type Description

m_Protocol v PRIMARY KEY

v NOT NULL

v Externally
defined
netProtocol
data type

Integer An integer representation of the
network protocol used by the
presently defined zone. Currently
only IP is supported:

v 0: Undefined

v 1: IP

m_Action v NOT NULL

v Externally
defined
filtAction data
type

Integer Action to perform for current zone:

v 0: Undefined

v 1: Include

v 2: Exclude

m_Zones List of type
zone

A list of varbinds (name=value)
that define the present discovery
zone.

m_AddressSpace Text The name of the NAT address
space to which the device belongs.
This value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the
public domain, this value is NULL.

Example scope database configuration
The example OQL inserts into the scope database tables in this topic would be
appended to the DiscoScope.cfg configuration file to configure DISCO when it is
launched.

Tip: In the detectionFilter and the instantiateFilter tables of the scope database, the
m_Protocol column is UNIQUE. Therefore, there must be no more than one insert
into either table per protocol.

Appendix A. Discovery databases 207

Configuration of the scope.zones table
Use this information to understand how to configure the scope.zones table.

Creating two inclusion zones

This example configuration of the scope.zones table creates two inclusion zones for
the current discovery. Both zones are defined using a single insert.
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values
(

1,
1,
[

{
m_Subnet="172.16.1.0"
m_NetMask=24

},
{

m_Subnet="172.16.2.*"
}

]
);

The previous OQL insert specifies the following conditions:
v The network uses the Internet Protocol (m_Protocol=1).
v Any devices that fall into the present zone are to be included in the discovery

(m_Action=1).
v The discovery includes:

– Any device that falls within the 172.16.1.0 subnet (with a subnet mask of 24,
that is, 24 bits turned on and 8 bits turned off, which implies a netmask of
255.255.255.0).

– Any device with an IP address starting with 172.16.2, that is, in the 172.16.2.0
subnet with a mask of 255.255.255.0.

Creating a zone within a zone

Zones can be specified within zones: within a given inclusion zone, you can
specify devices or subnets that are not to be detected. These devices are not pinged
by the Ping finder or interrogated by the discovery agents. For example, you can
define an include scope zone consisting of the Class B subnet 172.20.0.0/16, and
completely contained within that zone you can specify an exclude scope zone
consisting of the subnet 172.20.32.0/19. Finally, completely contained within the
exclude scope zone you could specify an include scope zone 172.20.33.0/24.
// Include all IP addresses in this range
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values
(

1,
1,

208 IBM Tivoli Network Manager IP Edition: Discovery Guide

[{m_Subnet = ’172.20.0.0’, m_NetMask = 16 }]
);

// Apart from the IP addresses in this range
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values
(

1,
2,
[{m_Subnet = ’172.20.32.0’ , m_NetMask = 19 }]

);
// Except for these IP addresses which we do want to include
insert into scope.zones
(

m_Protocol,
m_Action,
m_Zones

)
values
(

1,
1,
[{m_Subnet = ’172.20.33.0’ , m_NetMask = 24 }]

);

The previous OQL insert specifies three scope zones:
v All zones specify that the network uses the Internet Protocol (m_Protocol=1).
v Include and exclude zones are defined as follows:

– Any devices that fall into the first zone, 172.20.0.0/16, are to be included in
the discovery (m_Action=1).

– Any devices that fall into the second zone, 172.20.32.0/19, which is
completely contained within the first zone, are to be excluded from the
discovery (m_Action=2).

– Any devices that fall into the third zone, 172.20.33.0/24, which is completely
contained within the second zone, are to be included in the discovery
(m_Action=1).

Preventing the detection of devices with a filter
This example insert defines a detection filter. Since there must only be one insert
into the scope.detectionFilter table, multiple conditions for IP must be defined
using a single insert. The conditions of the filter can be combined using the
Boolean OQL keywords AND and OR.
insert into scope.detectionFilter
(

m_Protocol, m_Filter
)
values
(

1,
"(

(m_UniqueAddress <> ’10.10.63.234’)
AND
(m_ObjectId not like ’1\.3\.6\.1\.4\.1\..*’)

)"
);

Appendix A. Discovery databases 209

The above example filter ensures that only the following are further interrogated
by the discovery:
v Devices that do not have the IP address 10.10.63.234.
v Devices that do not have the Object ID 1.3.6.1.4.1.*.

In the above example, the backslash (\) is used in conjunction with the not like
comparison to escape the . character, which would otherwise be treated as a
wildcard.

Restricting instantiation based on Object ID
This example insert defines an instantiation filter. This example prevents the
instantiation of devices that match a given Object ID (OID).

The filter (m_Filter) uses column values from the scratchTopology.entityByName
table.

Note: To ensure that alerts are not raised for interfaces that are excluded by the
instantiation filter, you must set the RaiseAlertsForUnknownInterfaces variable. To
this, perform the following steps:
1. Edit the $NCHOME/etc/precision/NcPollerSchema.cfg configuration file.
2. Add the following line to the file:

update config.properties set RaiseAlertsForUnknownInterfaces = 1;

Restricting instantiation based on Object ID

The OQL clause, not like, indicates that only devices that pass the filter (that is,
devices for which the OID is not like 1.3.6.1.4.1.*) are instantiated.
insert into scope.instantiateFilter
(

m_Protocol,
m_Filter

)
values
(

1, // The backslash is used here to escape the .
"(// which would otherwise be treated

// as a wildcard.
(EntityOID not like ’1\.3\.6\.1\.4\.1\..*’)

)"
);

Access databases
There are several databases that control access to network devices: snmpStack
database and telnetStack database.

210 IBM Tivoli Network Manager IP Edition: Discovery Guide

snmpStack database
The snmpStack database defines the operation of the SNMP helper.

Description

The snmpStack database in defined in the SnmpStackSchema.cfg file.
Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.

snmpStack.accessParameters database table
The snmpStack.accessParameters database table configures the way that the SNMP
helper handles the retrieval of large non-scalar variables for particular devices or
subnets.

Description

Any values inserted into this table override the values for m_GetNextBoundary and
m_GetNextSlowDown that have been specified in the snmpHelper.configuration table.

Schema

The snmpStack.accessParameters database table schema is described in the
following table:

Table 49. snmpStack.accessParameters database table schema

Column name Constraints Data type Description

m_NetAddress NOT NULL Text The IP address on which to
override the boundary and
slowdown values.

m_NetMask Text The netmask. If no netmask is
specified, m_NetAddress is taken to
be a single IP address. If a
netmask is specified, m_NetAddress
is taken to be a subnet address.

m_GetNextSlowDown NOT NULL Integer The delay (in milliseconds) to
introduce between each SNMP
GetNext request when the number
of separate GetNext requests
issued while retrieving a particular
non-scalar SNMP variable exceeds
m_GetNextBoundary.

m_GetNextBoundary NOT NULL Integer When retrieving a particular
non-scalar SNMP variable from a
device, this is the minimum
number of GetNext requests to be
issued before the delay specified
by m_GetNextSlowDown is
introduced.

Appendix A. Discovery databases 211

Table 49. snmpStack.accessParameters database table schema (continued)

Column name Constraints Data type Description

m_GeneralSlowDown NOT NULL Integer The general amount by which to
delay a request (in milliseconds). A
general slow down must only be
used where absolutely necessary
as it can significantly increase the
overall discovery time.

m_useGetBulk NOT NULL Boolean
Integer

Indicates whether the SNMP
Helper must use GetBulk when
processing devices using SNMP v2
or SNMP v3. This field can take
the following values:

v 0: Do not use GetBulk

v 1: Use GetBulk

snmpStack.configuration database table
The snmpStack.configuration table controls the general operation of the SNMP
helper.

Schema

The snmpStack.configuration database table schema is described in the following
table:

Table 50. snmpStack.configuration database table schema

Column name Constraints Data type Description

m_AutoVersion Externally
defined Boolean
data type

Boolean
Integer

Flag controlling automatic SNMP
versioning:

v 1: Use automatic SNMP versioning.
The SNMP helper initially attempts
to use SNMP V3 for device access;
if unsuccessful, it uses SNMP V2,
then SNMP V1.

v 0: Do not use automatic versioning.
The SNMP helper ignores the
entries in the versions table.

m_AllowOQL Externally
defined Boolean
data type

Boolean
Integer

Flag controlling OQL access to the
SnmpHelper database:

v 1: Allowed OQL access to the
cached community strings for the
devices discovered.

v 2: Do not allow OQL access.

m_ExpireAfter Long The time, in seconds, after which to
expire the cached community string
for device if it has not been used. The
default value of zero does not expire
cache community strings.

212 IBM Tivoli Network Manager IP Edition: Discovery Guide

snmpStack.conversion database table
The snmpStack.conversion database table configures the SNMP Helper to replace
characters that are not allowed in the locale of the NCIM database with the
question mark character: '?'.

Description

The SNMP Helper substitutes characters on only those objects that are configured
in the snmpStack.multibyteObjects table.

Inserts into this database table are configured in the SnmpStackSchema.cfg file.

Schema

The snmpStack.conversion database table schema is described in the following
table:

Table 51. snmpStack.conversion database table schema

Column name Constraints Data type Description

m_SubstituteInvalidUTF8 NOT NULL Integer If set to 1, the SNMP Helper
replaces characters that are not
allowed in the locale of the NCIM
database with the question mark
character: '?'.

If set to 0, no action is taken on
invalid characters.

snmpStack.multibyteObjects table
The snmpStack.multibyteObjects table defines MIB objects that are checked to see if
they are multibyte strings.

Description

Sending a raw ASCII string back to the helper server can cause problems if the
string contains characters with special meaning in ASCII. If the MIB objects contain
multibyte strings, the SNMP helper encodes them.

Schema

The snmpStack.multibyteObjects database table schema is described in the
following table:

Table 52. snmpStack.multibyteObjects database table schema

Column name Constraints Data type Description

m_ObjectName NOT NULL Text The MIB object name to be
checked.

Appendix A. Discovery databases 213

snmpStack.verSecurityTable database table
The snmpStack.verSecurityTable maps an IP or subnet address with an SNMP
version (1, 2, or 3).

Description

The security parameters must be configured, as specified by the SNMP version, in
order to gain SNMP access to network device. An example of this is the use of
community strings for SNMP versions 1 and 2, as well as the specification of the
different security levels offered by SNMP V3.

Schema

The snmpStack.verSecurityTable database table schema is described in the
following table:

Table 53. snmpStack.verSecurityTable database table schema

Column name Constraints Data type Description

m_IpOrSubNetVer Text The IP or subnet address to
which the device access
configuration specified by this
record is applicable. The
interpretation of this field as an
IP or a subnet address is
dependent on the value
specified in the
m_NetMaskBitsVer field.

m_NetMaskBitsVer Integer The subnet mask for the
address specified by the
m_IpOrSubNetVer field. If this
field is set to 32 then
m_IpOrSubNetVer is taken as a
single IP address.

m_SNMPVersion Integer The SNMP version that this
configuration applies to.

v 0: SNMP V1

v 1: SNMP V2

v 2: SNMP V3

m_Password Text The password to try for this IP
or subnet address; for example,
community string.

m_Type Integer An integer classification of the
password type; for example:

(2) SNMP Get password.

m_SNMPVer3Level Integer Integer representation of the
SNMP V3 security level.

m_SNMPVer3Details Object of type
V3SecInfo

An object representation of the
authpassword and/or
privpassword details for SNMP
V3.

m_SecurityName Text The SNMP V3 security
password.

214 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 53. snmpStack.verSecurityTable database table schema (continued)

Column name Constraints Data type Description

m_SnmpPort Integer The SNMP port on the target
device, or target devices if the
device access configuration
specified by this record is
applicable to a subnet.

If no value is specified for
m_SnmpPort, then the value
defaults to the standard SNMP
161 port.

telnetStack database
The telnetStack database defines the Telnet access parameters for devices.

Description

The telnetStack database is defined in the TelnetStackSchema.cfg file. It has the
following tables:
v telnetStack.configuration
v telnetStack.passwords
Related reference:
“TelnetStackPasswords.cfg configuration file” on page 78
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.

telnetStack.passwords database table
The telnetStack.passwords database table defines the Telnet access parameters for
devices.

Schema

The telnetStack.passwords database table schema is described in the following
table:

Table 54. telnetStack.passwords database table schema

Column name Constraints Data type Description

m_IpOrSubNet Text IP or subnet address depending on value
of m_NetMaskBits.

m_NetMaskBits Integer The subnet mask. If set to 32,
m_IpOrSubNet is taken to be a single IP
address.

m_Password NOT NULL Text The password to try for this subnet or IP
address. Default = "\n" (carriage return).

m_Username Text The username to try for this subnet or IP
address. Default = "".

m_PwdPrompt Text Password prompt to expect from remote
device. Default = ".*assword:.*".

Appendix A. Discovery databases 215

Table 54. telnetStack.passwords database table schema (continued)

Column name Constraints Data type Description

m_LogPrompt Text Login prompt to expect from remote
device.

Default = ".*ogin:.*".

m_ConPrompt Text Console prompt to expect from remote
device. Default = "^.*[a-zA-Z0-9].*[$
%>#]$".

m_SSHSupport Boolean
Integer

Flag to indicate whether or not to use
SSH support for this device:

v 1: Use SSH support for this device.

v 0: Do not use SSH support for this
device.

If no value is specified for
m_SSHSupport, then the value defaults
to 0, that is, no SSH support.

Process management databases
On startup, the discovery engine, ncp_disco, populates the agent and stitcher
databases with information extracted from the discovery agent and discovery
stitcher files. While operating, ncp_disco scans for alterations to the agent and
stitcher files and updates the agent and stitcher databases if necessary. The
frequency of scans is set in the disco database.

The agents and stitchers databases contain definition and configuration information
for the agents and stitchers, such as a list of the types of devices that are sent to
any given agent. The information in these databases is extracted by the discovery
engine from the following directories:
v /precision/disco/agents
v /precision/disco/stitchers

The stitchers databases also contain information about when any given stitcher is
triggered; for example, "start stitcher X upon completion of agent Y," or "start
stitcher X upon the insertion of an entry into database table Z." It is therefore
possible to start stitchers on demand by inserting their name into the appropriate
actions table using OQL. The necessary agents are started automatically when a
device is inserted into the despatch table of the agent.

Configuring the data flow: starting stitchers on-demand
The information extracted by DISCO contains the full definitions of the agents and
stitchers, which includes the trigger conditions. By modifying the trigger
conditions, you can modify the data flow of the discovery process.

You can start the discovery cycle from any point within the configured data flow
by placing a stitcher into the actions table of the stitchers database.

216 IBM Tivoli Network Manager IP Edition: Discovery Guide

agents database schema
The agents database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its
fully qualified database table names are: agents.definitions; agents.victims;
agents.status

agents.definitions table
The agents.definitions table contains scheduling information for every discovery
agent, extracted from the information in the discovery agent file.

Table 55. agents.definitions database table schema

Column name Constraints Data type Description

m_Name v PRIMARY KEY

v NOT NULL

v UNIQUE

Text Name of the agent.

m_Type Externally
defined
agentType data
type

Integer Agent Type:

v 0: Undefined

v 1: Precompiled

v 2: Text defined

v 3: Combination

m_Text NOT NULL Text Textual description of agent rules.

m_ExecuteOn Text The host on which to execute the agent.

m_Phase Default = 1 Integer The discovery phase by the end of
which the agent is expected to
complete.

m_UpdTime Long integer The time of the last modification, which
determines whether the agent has
changed since its definition was stored.

agents.victims table
The agents.victims table contains an extraction of the criteria that determine which
devices get sent to the agent.

Table 56. agents.victims database table schema

Column
name Constraints Data type Description

m_Name v PRIMARY KEY

v NOT NULL

v UNIQUE

Text Name of the agent.

m_Filter Text The filter condition that determines
which devices are sent to the agent.

Appendix A. Discovery databases 217

agents.status table
The agents.status table contains information about the present status of the agent.

Table 57. agents.status database table schema

Column name Constraints Data type Description

m_Name v PRIMARY KEY

v NOT NULL

v UNIQUE

Text Name of the agent.

m_State Externally
defined
agentState data
type.

Default = 0

Integer The current state of the agent:

v 0: Undefined

v 1: Not running

v 2: Start up

v 3: Running

v 4: Finished

v 5: Died

m_NumConnects Default = 0 Integer The number of times that DISCO has
connected to the agent.

Stitchers database schema
The stitchers database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its
fully qualified database table names are: stitchers.definitions; stitchers.triggers;
stitchers.status; stitchers.actions.

stitchers.definitions table
The stitchers.definitions table contains the scheduling information for every
discovery stitcher.

Table 58. stitchers.definitions database table schema

Column
name Constraints Data type Description

m_Name v PRIMARY KEY

v NOT NULL

v UNIQUE

Text Name of the stitcher.

m_Type Externally
defined
stitcherType data
type

Integer Stitcher type:

v 0: Undefined

v 1: Precompiled

v 2: Text defined

m_Text Text Textual description of stitcher rules.

m_Phase Default = 0 Integer The discovery phase by the end of
which the stitcher is expected to
complete.

m_UpdTime Long integer The time of the last modification to
the stitcher.

218 IBM Tivoli Network Manager IP Edition: Discovery Guide

stitchers.triggers table
The stitchers.triggers table contains an extraction of the criteria that determine the
trigger for the stitcher.

Table 59. stitchers.triggers database table schema

Column name Constraints Data type Description

m_Name v PRIMARY KEY

v NOT NULL

v UNIQUE

Text Name of the stitcher.

m_Type Integer The type of stitcher trigger:

v 0: Undefined

v 1: On the completion of some other
activity; for example, another stitcher
or a discovery phase

v 2: On a table insert

v 3: On demand

v 4: On a timer

m_Trigger Externally
defined
ruleTrigger data
type

Object Description of the stitcher trigger.

stitchers.status table
The stitchers.status table contains the information about the present status of the
stitcher.

Table 60. stitchers.status database table schema

Column
name Constraints Data type Description

m_Name v PRIMARY KEY

v NOT NULL

v UNIQUE

Text Name of the stitcher.

m_State Externally
defined stchrState
data type

Default = 0

Integer The current state of the stitcher:

v 0: Undefined

v 1: Start up

v 2: Running

v 3: Finished

v 4: Not maintained (the stitcher is not
having its state maintained)

Appendix A. Discovery databases 219

stitchers.actions table
If a stitcher is inserted into the stitchers.actions table, DISCO runs the stitcher.
Once the stitcher has completed, its entry is deleted from the stitchers.actions table.
Any stitchers triggered to execute from the stitcher that has been inserted, or upon
completion of the stitcher, are also executed.

You can also configure other actions to take place on completion of the stitcher, so
that the discovery cycle completes from that point onwards.

Table 61. stitchers.actions database table schema

Column name Constraints Data type Description

m_Name v PRIMARY
KEY

v NOT NULL

Text Name of the stitcher.

Related concepts:
“Configurable discovery data flow” on page 294
The discovery process data flow is user-configurable. Stitchers control the
movement of data between databases, and you can customize the discovery
process by changing the way in which the stitchers are triggered and operate.

Subprocess databases
The finders, Details, and agent databases are used during the discovery by the
discovery engine subprocesses to store information retrieved from the network.
The databases are defined within the configuration file, DiscoSchema.cfg.

The subprocess databases include:
v The finders database, which is used by the finders to store information about

device existence.
v The Details database, which is used by the Details agent to store basic device

information.
v The discovery agent databases, which are created using a template.

The finders, Details and AssocAddress agents must always be run, so their
databases are defined in the DiscoSchema.cfg configuration file. The databases for
the rest of the discovery agents are created based on a template that is defined in
the DiscoSchema.cfg configuration file.

finders database schema
The finders database is defined in $NCHOME/etc/precision/DiscoSchema.cfg.

The fully qualified database table names of the finders database are:
v finders.despatch
v finders.returns
v finders.pending
v finders.processing
v finders.rediscovery

The finders database is the central monitoring and management point for finders
operating during discovery. The finders discover the existence of devices and
report these devices back to the finders database, but do not discover connections.

220 IBM Tivoli Network Manager IP Edition: Discovery Guide

Network entities reported by the finders are usually sent to the Details agent for
retrieval of basic device information, although the discovery data flow is fully
configurable.
Related concepts:
“Discovery cycles” on page 285
A discovery cycle has occurred when the discovery data flow for a particular cycle
has gone from start to finish. A full discovery might require more than one cycle.

finders.despatch table
The finders.despatch table contains a record of all the requests sent to the finders
and the current status of the requests.

Table 62. finders.despatch database table schema

Column name Constraints Data type Description

m_Finder v PRIMARY KEY

v NOT NULL

Text The name of the finder
responsible for the
request.

m_FindRequest v PRIMARY KEY

v UNIQUE

v NOT NULL

Text The OQL request sent to
the finder named above.

m_Request Status Integer The current status of the
request sent to the finder.

finders.returns table
When a finder finds a device, it returns the information to the finders.returns table,
provided that the discovery is still in the device discovery phase, that is, data
collection phase one. If the discovery is in the blackout state, the finders return the
information to the pending table.

The returns table serves as a transfer point, notifying the system that a device
exists. By default, a stitcher sends the device information to the Details agent to
discover basic device information.

Table 63. finders.returns database table schema

Column name Constraints Data type Description

m_UniqueAddress v PRIMARY KEY

v UNIQUE

v NOT NULL

Text The IP address of the
discovered network entity.

m_Name Text The unique name of the
network entity.

m_Creator Text The finder that created this
record.

m_Protocol Integer The protocol of the
discovered device:

v 1: IP

v 2: IP-NAT

Appendix A. Discovery databases 221

finders.pending table
The pending table accepts device information when the returns table has been
locked out by DISCO. The returns table has to be locked during data processing
because even though the data collection stage has completed, it does not
necessarily mean that all the devices on the network have been discovered.

Network entities that have been sent to the pending table are processed after the
current discovery cycle has been completed.

Table 64. finders.pending database table schema

Column name Constraints
Data
type Description

m_UniqueAddress v PRIMARY
KEY

v UNIQUE

v NOT NULL

Text The IP address of the discovered network
entity.

m_Name Text The unique name of the network entity.

m_Creator Text The finder that created this record in the
table.

m_Protocol Integer The protocol of the discovered device:

v 1: IP

v 2: IP-NAT

m_AddressSpace Text The name of the NAT address space to
which the device belongs.

This value is set in the
translations.NATAddressSpaceIds table. If
the discovery is not using NAT, or if the
device is in the public domain, this value
is NULL.

finders.processing table
The processing table contains a record of all the discovered entities that are
currently being processed by DISCO. Any device that has been reported to the
returns table and is awaiting the next action to take place has an entry in the
processing table.

Table 65. finders.processing database table schema

Column name Constraints Data type Description

m_UniqueAddress v PRIMARY
KEY

v UNIQUE

v NOT NULL

Text The IP address of the discovered
network entity.

m_Name Text The unique name of the network
entity.

m_Creator Text The finder that created this record
in the table.

222 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 65. finders.processing database table schema (continued)

Column name Constraints Data type Description

m_Protocol Integer The protocol of the discovered
device:

(1) IP

(2) IP-NAT

m_AddressSpace Text The name of the NAT address
space to which the device belongs.
This value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the
public domain, this value is NULL.

finders.rediscovery table
The rediscovery table can hold nodes and subnets that you want to rediscover.
Any device inserted into this table is sent to the Ping finder for processing.

Table 66. finders.rediscovery database table schema

Column name Constraints Data type Description

m_Address v PRIMARY KEY

v NOT NULL

Text The address to ping.

m_RequestType Int The type of IP address:

v 1: Individual

v 2: Subnet

m_NetMask Text The net mask if the address refers to a
subnet.

m_Protocol NOT NULL Int The protocol of this IP address:

v 1: IPv4

v 3: IPv6

Details database schema
The Details database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its
fully qualified database table names are: Details.despatch; Details.returns.

The Details agent retrieves basic information about devices discovered by the
finders when information from the finders is placed in the despatch table. The
Details agent retrieves the appropriate device information and places the results in
the returns table.

A stitcher takes the information from the Details.returns table and sends it to the
Associated Address agent and ultimately the appropriate discovery agent.

Appendix A. Discovery databases 223

details.despatch table
The despatch table contains basic information about devices that have been
detected by the finders. When data is placed in this table, the Details agent
automatically interrogates the network for more detailed device information.

Table 67. Details.despatch database table schema

Column name Constraints
Data
type Description

m_UniqueAddress v PRIMARY KEY

v NOT NULL

Text Unique IP address of the network
entity.

m_Name Text Unique name of an entity on the
network.

m_Protocol Integer The protocol of the discovered
device:

v 1: IP

v 2: IP-NAT

m_AddressSpace Text The name of the NAT address space
to which the device belongs.

This value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the public
domain, this value is NULL.

details.returns table
The returns table holds detailed device information retrieved by the Details agent.
Information inserted into this table is automatically processed by the stitchers so
that the device connectivity can be discovered by the appropriate discovery agent.

Table 68. Details.returns database table schema

Column name Constraints Data type Description

m_Name Text Unique name of an entity on the
network.

m_UniqueAddress NOT NULL Text Layer 3 address.

m_Protocol Integer The protocol of the discovered
device:

v 1: IP

v 2: IP-NAT

m_ObjectId Text Textual representation of the
device class (an ASN.1 address).

m_Description Text Value of sysDescr MIB variable of
the entity.

m_HaveAccess Externally
defined Boolean
data type

Integer Flag indicating whether there is
SNMP access to the device:

v 1: Have access

v 0: No access

m_UpdAgent Text The agent that updated this
device.

224 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 68. Details.returns database table schema (continued)

Column name Constraints Data type Description

m_LastRecord Externally
defined Boolean
data type

Boolean
integer

A flag indicating whether this is
the last record for this entity (that
is, whether the entity has been
completely processed):

v 1: True

v 0: False

m_AddressSpace Text The name of the NAT address
space to which the device belongs.
This value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the
public domain, this value is
NULL.

m_ExtraInfo Externally
defined vblist
data type

Object Any extra information.

Finders databases
Finders determine device existence. Each of the finders uses a different method to
discover network devices. You can enable finders for your discovery by
configuring them as managed processes of DISCO in their respective configuration
files. Finders are automatically launched at the appropriate time, provided that
CTRL is running.

Each finder must be configured by editing its configuration file. The finders
discover the existence of devices and report these devices back to the finders
database, but do not discover connections.

Note that the finders database is distinct from the databases that are associated
with the individual finders.

The finders are described in the table below, with their executable name and the
location of their configuration file. $NCHOME is the environment variable that
contains the path to the netcool directory.

Table 69. Description of the finders

Finder Executable Configuration file Description

Ping ncp_df_ping $NCHOME/etc/precision/
DiscoPingFinderSchema.cfg
$NCHOME/etc/precision/
DiscoPingFinderSeeds.cfg

Makes a simple ICMP
echo request for broadcast
or multicast addresses,
individual IP addresses,
or all devices on a subnet.

File ncp_df_file $NCHOME/etc/precision/
DiscoFileFinderSchema.cfg
$NCHOME/etc/precision/
DiscoFileFinderParseRules.cfg

Parses a file, such as
/etc/hosts, to find
devices on the network.

Appendix A. Discovery databases 225

Table 69. Description of the finders (continued)

Finder Executable Configuration file Description

Collector ncp_df_collector $NCHOME/etc/precision/
DiscoCollectorFinderSchema.cfg
$NCHOME/etc/precision/
DiscoCollectorFinderSeeds.cfg

An EMS collector is a
software module that
retrieves and stores
topology data from an
Element Management
System (EMS). The
Collector finder queries a
collector and gets a list of
IP addresses managed by
the EMS associated with
that collector.

collectorFinder database
The collectorFinder database defines the operation of the Collector finders.

Description

The collectorFinder database is defined in the DiscoCollectorFinderSchema.cfg
configuration file. It has the following tables:
v collectorFinder.collectorRules
v collectorFinder.configuration
Related reference:
“DiscoCollectorFinderSeeds.cfg configuration file” on page 56
The DiscoCollectorFinderSeeds.cfg configuration file defines how topology data
is acquired from Element Management System (EMS) collectors during discovery.

collectorFinder.collectorRules database table
The collectorFinder.collectorRules database table configures the operation of the
Collector finder.

Description

You can override some of the settings for particular collectors in the
collectorFinder.configuration table. The collectorRules table can contain multiple
records.

Schema

The collectorFinder.collectorRules database table schema is described in the
following table:

Table 70. collectorFinder.collectorRules database table schema

Column name Constraints Data type Description

m_Host Text The host address on which the
collector is running. This field is NOT
NULL only if the collector is running
on a different host to Network
Manager.

This field may be configured for both
a discovery and a rediscovery.

226 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 70. collectorFinder.collectorRules database table schema (continued)

Column name Constraints Data type Description

m_Port v PRIMARY KEY

v NOT NULL

Text The port on which the collector is
listening. If the collector is running on
the same host as Network Manager,
then this is a Network Manager port.

This field may be configured for both
a discovery and a rediscovery.

m_RequestType Integer Flag denoting which topology data to
download from the data source. This
flag works together with the
m_Address and m_NetMask fields.
The flag takes the following values:

v 0: Rediscover all devices. All devices
retrieved by the collector are
discovered. The m_Address and
m_NetMask fields are ignored.

v 1: Rediscover single device. Only
one of the devices retrieved by the
collector is discovered. The
m_Address field specifies the device
and the m_NetMask fields is
ignored.

v 2: Rediscover subnet. One of the
subnets retrieved by the collector is
discovered. The m_Address field
specifies the subnet and the
m_NetMask field specifies the
subnet mask.

This field is configured for a
rediscovery only.

m_DataSourceId Integer Limits rediscovery to a single data
source supported by the collector. This
field is rarely used as a collector
usually only supports a single data
source.

This field is configured for a
rediscovery only.

m_Address Text Used in conjunction with the
m_RequestType and m_NetMask fields
when specifying a device or subnet to
rediscover. See the entry for
m_RequestType for more information.

This field is configured for a
rediscovery only.

m_NetMask Text Used in conjunction with the
m_RequestType and m_Address fields
when specifying a device or subnet to
rediscover. See the entry for
m_RequestType for more information.

This field is configured for a
rediscovery only.

Appendix A. Discovery databases 227

Table 70. collectorFinder.collectorRules database table schema (continued)

Column name Constraints Data type Description

m_NumRetries Integer Number of retries to issue an RPC
XML request to the collector. Setting
this field is optional. If set, this field
overrides the default specified in the
collectorFinder.configuration table.

This field may be configured for both
a discovery and a rediscovery.

collectorFinder.configuration database table
The collectorFinder.configuration table specifies the general rules of the Element
Management System (EMS) collector methodology and must only contain one
record.

Schema

The collectorFinder.configuration database table schema is described in the
following table:

Table 71. collectorFinder.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be used by the Collector
finder.

m_TimeOut Integer The maximum time to wait for a reply from a
collector (the timeout).

m_NumRetries Integer The number of times to issue an XML-RPC request to
a collector.

m_MaxResponseSize Integer The maximum size for an XML-RPC response in
bytes.
Note: The default maximum response size might be
too small when running a Collector-based discovery
against Collectors that result in very large responses.
In such cases, increase the maximum response size.
To increase the maximum response size, set the
m_MaxResponseSize parameter to a higher value.
Make sure you set the same value for
m_MaxResponseSize in both of the following files:

v NCHOME/etc/precision/
DiscoCollectorFinderSchema.cfg

v NCHOME/etc/precision/
DiscoXmlRpcHelperSchema.cfg

228 IBM Tivoli Network Manager IP Edition: Discovery Guide

fileFinder database
The fileFinder database defines the operation of the File finder.

Description

The fileFinder database is defined in the DiscoFileFinderParseRules.cfg file. It has
the following tables:
v fileFinder.configuration
v fileFinder.parseRules
Related reference:
“DiscoFileFinderParseRules.cfg configuration file” on page 58
The DiscoFileFinderParseRules.cfg file can be used to specify the files to be parsed
for a list of IP addresses of devices that exist on the network.

fileFinder.configuration database table
You can configure the File finder with the fileFinder.configuration table, which
specifies the number of threads to be used by the finder.

Schema

The fileFinder.configuration database table is described in the following table.

Table 72. fileFinder.configuration database table schema

Column name Constraints Data type Description

m_NumThreads NOT NULL Integer The number of threads to be used by
the File finder.

fileFinder.parseRules database table
By configuring inserts into the fileFinder.parseRules table, you can specify the files
to be parsed for a list of IP addresses of devices on the network.

Description

The fileFinder.parseRules table specifies the rules for file parsing.

A typical file that you would parse, for example, is the /etc/hosts file on the
machine running DISCO. You can also seed the discovery by parsing the
/etc/defaultrouter file.

Schema

The fileFinder.parseRules database table schema is described in the following table:

Table 73. fileFinder.parseRules database table schema

Column name Constraints Data type Description

m_FileName v NOT NULL

v UNIQUE

Text The unique full path and filename of
the file to be parsed, for example,
/etc/hosts.

Appendix A. Discovery databases 229

Table 73. fileFinder.parseRules database table schema (continued)

Column name Constraints Data type Description

m_Delimiter Text The delimiter that separates the data
fields in the file. Regular pattern
matching expressions are also
accepted as valid delimiters.
Note: \t is not supported as a valid
value for the <tab> character.

m_ColDefs List of atoms A list of rules that specify which
variables to extract and the columns
from which to get them.

pingFinder database
The pingFinder database defines the operation of the Ping finder.

Description

The pingFinder database is defined in the DiscoPingFinderSeeds.cfg file. It has the
following tables:
v pingFinder.configuration
v pingFinder.pingFilter
v pingFinder.pingRules
v pingFinder.scope
Related reference:
“DiscoPingFinderSeeds.cfg configuration file” on page 61
The DiscoPingFinderSeeds.cfg configuration file is used for seeding the Ping finder
and restricting device detection.

pingFinder.configuration database table
The pingFinder.configuration table specifies the general rules of the ping
methodology. The table must contain only one record.

Description

The pingFinder.configuration table allows you to configure the way devices are
pinged, including enabling broadcast or multicast pinging. Although pinging of
broadcast/multicast addresses allows devices to be discovered more quickly than
other detection methods, it is sometimes less desirable to do so under certain
network conditions, such as when the network is heavily congested. In general,
you would ping broadcast addresses on an unknown sparsely populated network.
You must only ping multicast addresses where they have been set up on the
network.

Schema

The pingFinder.configuration database table schema is described in the following
table:

Table 74. pingFinder.configuration database table schema

Column name Data type Description

m_NumThreads Integer The number of threads to be used by the Ping
finder.

230 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 74. pingFinder.configuration database table schema (continued)

Column name Data type Description

m_TimeOut Integer The maximum time to wait for a reply from a
pinged address (the timeout).

m_InterPingTime Integer The interval between pinging the addresses in a
subnet.

m_NumRetries Integer The number of times a device is to be
re-pinged.

m_Broadcast Integer Flag used to enable or disable broadcast
address pinging:

v 1: Enable

v 0: Disable

m_Multicast Integer Flag used to enable or disable multicast address
pinging:

v 1: Enable

v 0: Disable

pingFinder.pingFilter database table
The pingFinder.pingFilter table can be used to exclude particular devices or
subnets from being pinged by the Ping finder.

Description

You may wish to exclude certain interfaces, such as ISDN and modem interfaces,
because pinging these interfaces generates phone calls, which costs money. If you
configure the Ping finder to use both the scope.zones table and the
pingFinder.pingFilter table, the Ping finder pings those devices or subnets it has
been seeded with if they are within either the discovery scope or the Ping finder
scope.

Schema

The pingFinder.pingFilter database table schema is described in the following table:

Table 75. pingFinder.pingFilter database table schema

Column name Constraints Data type Description

m_Protocol v PRIMARY KEY

v NOT NULL

v Externally
defined
netProtocol
data type

Integer An integer representation of the
network protocol used by the
presently defined Ping finder zone.
Currently only IP is supported:

v 0: Undefined

v 1: IP

m_Action v NOT NULL

v Externally
defined
netProtocol
data type

Integer Action to perform for current zone:

v 0: Undefined

v 1: Include

v 2: Exclude

m_Zones List of type
zone

A list of varbinds (name=value)
that define the present zone.

Appendix A. Discovery databases 231

Table 75. pingFinder.pingFilter database table schema (continued)

Column name Constraints Data type Description

m_AddressSpace Text The name of the NAT address
space to which the device belongs.
This value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the
public domain, this value is NULL.

pingFinder.pingRules database table
The pingFinder.pingRules table specifies the different addresses and subnets to be
pinged by the Ping finder.

Description

The pingRules table can contain multiple records.

Schema

The pingFinder.pingRules table is described in the following table.

Table 76. pingFinder.pingRules database table schema

Column name Constraints Data type Description

m_Address v PRIMARY KEY

v NOT NULL

Text The address to ping.

m_RequestType Integer Flag denoting address type:

v 1: Individual

v 2: Subnet

m_NetMask Text The subnet mask. If a value is
specified for this field, it automatically
implies that the address is a subnet
address.

m_TimeOut Integer Maximum time to wait for response.
This value overrides the default
timeout specified in the configuration
table.

m_NumRetries Integer Maximum number of times to
reattempt the ping. This value
overrides the default value.

pingFinder.scope database table
The pingFinder.scope table defines the scope of the Ping finder.

Description

You can use the pingFinder.scope table to configure the way the Ping finder checks
whether it is allowed to ping a particular device. You can exclude particular
devices or subnets from being pinged by the Ping finder.

232 IBM Tivoli Network Manager IP Edition: Discovery Guide

Schema

The pingFinder.scope database table schema is described in the following table:

Table 77. pingFinder.scope database table schema

Column name Constraints Data type Description

m_UseScope Integer Flag denoting whether or not to use the
entries in the scope.zones table when
deciding which devices to ping:

v 0: The Ping finder ignores the
scope.zones table when deciding
which devices to ping.

v 1: This is the default value. The Ping
finder uses the scope.zones table to
check which devices can be pinged.

If you are performing an unscoped
discovery, that is, a discovery without
any entries in the scope.zones table,
then it is preferable to set m_UseScope
to zero to reduce processing load.

m_UsePingEntries Integer Flag denoting whether or not to use the
entries in the pingFinder.pingFilter table
when deciding which devices to ping:

v 0: This is the default value. The Ping
finder ignores any entries in the
pingFinder.pingFilter table when
deciding which devices can be
pinged.

v 1: The Ping finder checks the
pingFinder.pingFilter table before it
pings a particular device to see if the
device can be pinged.

The Helper Server databases
When the Helper Server starts, it creates a database for each helper that is to be
run.

Tip: It is good practice to configure the Helper Server to start automatically by
making the appropriate OQL insertion into the services.inTray table of CTRL.
Alternatively, you can start the Helper Server manually with the ncp_d_helpserv
command on the command line.
Related reference:
“DiscoHelperServerSchema.cfg configuration file” on page 60
The DiscoHelperServerSchema.cfg configuration file defines the contents of the
several helper databases.

Appendix A. Discovery databases 233

The ARPhelper database
The ARPHelper database stores information about the requests the ARP helper
makes from the network. It is defined in $NCHOME/etc/precision/
DiscoHelperServerSchema.cfg, and its fully qualified database table names are:
ARPHelper.ARPHelperTable; ARPHelper.ARPHelperConfig.

The ARPHelperTable database table, described in Table 78, configures the general
operation of the ARP helper.

Table 78. ARPHelper.ARPHelperTable database table schema

Column name Constraints Data type Description

RivHelperRequestReplyKey v PRIMARY
KE

v NOT NULL

v UNIQUE

Text A unique key interface to
the databases of the
Helper Server for Reply
requests.

RivHelperRequestGetKey NOT NULL Text A key interface to the
databases of the Helper
Server for Get requests.

RivHelperDbTimeToDie Long64 Indicates how long the
requested information is
to live within the Helper
Server.

m_HostIp NOT NULL Text IP address of the device
to interrogate.

m_HostSubnet Text Subnet of the host device
to be interrogated.

m_HostMask Text The subnet mask of the
host device to be
interrogated.

m_HostMac Text The physical address of
the device (MAC
address).

The ARPHelperConfig table, described in Table 79, contains configuration
information for the ARP helper.

Table 79. ARPHelper.ARPHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database timeout,
that is, how long before the
database expires in the absence
of any activity.

m_HelperReqTimeout Long64 The helper request timeout, that
is, how long before each request
expires.

m_HelperStartupTimeout Long64 The default helper startup
timeout, that is, the maximum
time to wait for a helper to start
up when requested.

234 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 79. ARPHelper.ARPHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoWeQuery Integer Indicates whether the Helper
Server queries its database or
whether it queries the network
using a helper:

(0) Do not use cache

(1) Use cache

m_HelperDoQueryVBs

Optional

Object type
varbinds

List of helper inputs that
always query the database
before querying the network. If
the item is found in the
database then the network is
not queried.

m_HelperDoNotQueryVBs

Optional

Object type
varbinds

List of helper inputs that do not
query the database. This field
overrides the value specified in
m_HelperDoWeQuery.

m_HelperDoWeStore Integer Indicates whether the Helper
Server stores any replies from
the helpers in its database:

(0) Do not store replies in
database

(1) Store replies in database

m_HelperDoStoreVBs

Optional

Object type
varbinds

List of helper inputs that
always store data in the Helper
Server database. This field
overrides the value of
m_HelperDoWeStore.

m_HelperDoNotStoreVBs

Optional

Object type
varbinds

List of helper inputs that never
store data in the Helper Server
databases. This field overrides
the value of m_HelperDoWeStore.

m_HelperDebugLevel

Optional

Integer Sets the debug level of the
helper, printing to
m_HelperLogfile.

m_HelperLogfile

Optional

Text The full path and file for the
logfile of the current helper.

The m_HelperDoWeQuery and m_HelperDoWeStore fields each have two related
optional fields. A record entered into either m_HelperDoWeQuery or
m_HelperDoWeStore is the default setting to which the helper responds if no
records are entered into the optional fields. However, a record entered into either
of the related optional fields overrides the default setting.

For example, if m_HelperDoWeQuery is set to query the network rather than the
cache (that is, m_HelperDoWeQuery=0) and if an IP address of 192.168.0.1 is
specified in m_HelperDoQueryVBs, then a request record where m_IpAddress =
192.168.0.1 results in the cache being queried rather than the network. The
network is only queried if the information is not currently held in the cache.

Appendix A. Discovery databases 235

ARPhelper database configuration

The following example insert gives a typical ARP helper configuration.
insert into ARPHelper.ARPHelperConfig
(

m_HelperDbTimeout,
m_HelperReqTimeout,
m_HelperStartupTimeout,
m_HelperDoWeQuery,
m_HelperDoWeStore

)
values
(

259200, 1200, 90, 0, 0
);

DNS helper database schema
The DNSHelper database is defined in $NCHOME/etc/precision/
DiscoHelperServerSchema.cfg. Its fully qualified database table names are:
DNSHelper.DNSHelperTable; DNSHelper.DNSHelperConfig

The DNSHelper database table stores information about the requests that the ARP
helper makes from the network.

Table 80. DNSHelper.DNSHelperTable database table schema

Column name Constraints Data type Description

RivHelperRequestReplyKey v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text A unique key for
Reply requests.

RivHelperRequestGetKey NOT NULL Text A key for Get
requests.

RivHelperDbTimeToDie Long64 How long the
requested information
is to live within the
Helper Server.

m_HostName Text The host name for
this IP address.

m_HostIp Text The IP addresses for
this host.

RivHelperRequestOutput Atom The response data.

The DNSHelperConfig table holds configuration information for the DNS helper.

Table 81. DNSHelper.DNSHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database
timeout, that is, how long
before the database
expires.

m_HelperReqTimeout Long64 The helper request
timeout, that is, how long
before each request
expires.

236 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 81. DNSHelper.DNSHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperStartupTimeout Long64 The default helper
start-up timeout, that is,
the maximum time to
wait for a helper to start
up when requested.

m_HelperDoWeQuery Integer Indicates whether the
Helper Server queries its
database or whether it
queries the network
using a helper:

v 0: Do not use cache

v 1: Use cache

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that
do not query the
database. This field
overrides the value of
m_HelperDoWeQuery.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that
always query the
database before querying
the network. If the item
is found in the database
then the network is not
queried.

m_HelperDoWeStore Integer Indicates whether the
Helper Server stores any
replies from the helpers
in its database:

v 0: Do not store replies
in database

v 1: Store replies in
database

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that
always store data in the
Helper Server database.
This field overrides
m_HelperDoWeStore.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that
never store data in the
Helper Server databases.
This field overrides
m_HelperDoWeStore.

m_HelperDebugLevel

optional

Integer Sets the debug level of
the helper, printing to
m_Logfile.

m_HelperLogfile

optional

Text The full path and file for
the logfile of the current
helper.

DNS helper database configuration

The following example insert shows a typical DNS helper configuration.

Appendix A. Discovery databases 237

insert into DNSHelper.DNSHelperConfig
(

m_HelperDbTimeout,
m_HelperReqTimeout,
m_HelperStartupTimeout,
m_HelperDoWeQuery,
m_HelperDoWeStore

)
values
(

259200, 1200, 90, 0, 0
);

Ping helper database schema
The Ping helper database is defined in $NCHOME/etc/precision/
DiscoHelperServerSchema.cfg. Its fully qualified database table names are:
PingHelper.PingHelperTable; PingHelper.PingHelperConfig;
pingHelper.configuration

The schema of the PingHelper.PingHelperTable database table is described in
Table 82.

Table 82. PingHelper.PingHelperTable database table schema

Column name Constraints Data type Description

RivHelperRequestReplyKey v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text A key interface to
the databases of the
Helper Server for
Reply requests.

RivHelperRequestGetKey NOT NULL Text A key interface to
the databases of the
Helper Server for
Get requests.

RivHelperDbTimeToDie Long64 How long the
requested
information is to live
within the Helper
Server.

m_HostIp Atom IP address to ping.

m_HostSubnet Text Subnet of the IP
address to ping.

m_HostMask Text The subnet mask of
the address to ping.

m_PingRequestType Integer The type of ping
request:

v 1: Individual
address

v 2: Subnet

m_PingResponseType Integer Type of reply to the
ping.

m_PingRetries Integer Number of retries
for the ping.

m_PingTimeout Integer Maximum time to
wait for reply.

RivHelperRequestOutput Atom The response data.

238 IBM Tivoli Network Manager IP Edition: Discovery Guide

The schema of the PingHelper.PingHelperConfig database table is described in
Table 83.

Table 83. PingHelper.PingHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database
timeout, that is, how
long before the database
expires.

m_HelperReqTimeout Long64 The helper request
timeout that is, how
long before each request
expires.

m_HelperStartupTimeout Long64 The default helper
startup timeout, that is,
the maximum time to
wait for a helper to start
up when requested to.

m_HelperDoWeQuery Integer Indicates whether the
Helper Server queries
its database or whether
it queries the network
using a helper:

v 0: Do not use cache

v 1: Use cache

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs
that do not query the
database. This field
overrides
m_HelperDoWeQuery.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs
that always query the
database before
querying the network. If
the item is found in the
database then the
network is not queried.

m_HelperDoWeStore Integer Indicates whether the
Helper Server stores any
replies from the helpers
in its database:

v 0: Do not store replies
in database

v 1: Store replies in
database

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs
that always store data in
the Helper Server
database. This field
overrides
m_HelperDoWeStore.

Appendix A. Discovery databases 239

Table 83. PingHelper.PingHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs
that never store data in
the Helper Server
databases. This field
overrides
m_HelperDoWeStore.

m_HelperDebugLevel

optional

Integer Sets the debug level of
the helper, printing to
the file specified in
m_HelperLogfile.

m_HelperLogFile

optional

Text The full path and file
for the logfile of the
current helper.

The schema of the pingHelper.configuration database table is described in Table 84.
It must contain only one record.

Although pinging broadcast and multicast addresses allows devices to be
discovered quicker than other detection methods, it is not advisable to do so under
certain network conditions; for instance, when the network is heavily congested.

Table 84. pingHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be
used by the helper.

m_TimeOut Integer The maximum time to wait
for a reply from a pinged
address, in milliseconds. If
you are running the
TraceRoute agent you may
need to increase this value,
depending on network
conditions.

m_NumRetries Integer The number of times a
device is to be re-pinged.

m_InterPingTime Integer The time interval in
milliseconds between
successive ping attempts of
subnet addresses.

m_Broadcast Integer Flag used to enable or
disable broadcast address
pinging:

v (1) Enable

v (0) Disable

m_Multicast Integer Flag used to enable or
disable multicast address
pinging:

v (1) Enable

v (0) Disable

240 IBM Tivoli Network Manager IP Edition: Discovery Guide

PING helper database configuration

The following insert provides a typical example configuration of the PingHelper
database.
insert into PingHelper.PingHelperConfig
(

m_HelperDbTimeout,
m_HelperReqTimeout,
m_HelperStartupTimeout,
m_HelperDoWeQuery,
m_HelperDoWeStore

)
values
(

259200, 1200, 90, 0, 0
);

SNMP helper database schema
The SnmpHelper database is defined in $NCHOME/etc/ precision/
DiscoHelperServerSchema.cfg. Its fully qualified database table names are:
SnmpHelper.SnmpHelperTable; SnmpHelper.SnmpHelperConfig.

The schema of the SNMPHelperTable database table is described in Table 85.

Table 85. SnmpHelper.SnmpHelperTable database table schema

Column name Constraints Data type Description

RivHelperRequestReplyKey v PRIMARY
KEY

v NOT
NULL

v UNIQUE

Text A key interface to
the databases of the
Helper Server for
Reply requests.

RivHelperRequestGetKey NOT NULL Text A key interface to
the databases of the
Helper Server for
Get requests.

RivHelperDbTimeToDie Long64 How long the
requested
information is to
live within the
Helper Server.

m_HostIp NOT NULL Text IP address of the
device to
interrogate.

m_CommunitySuffix Text The suffix to the
community string.

m_OID NOT NULL Atom Object ID for the
Get request.

m_SnmpIndex Atom The index of the
Get request (if it is
a Get request).

m_RequestType Integer Type of request:

v 0: Get

v 1: GetNext

v 2: GetBulk

Appendix A. Discovery databases 241

Table 85. SnmpHelper.SnmpHelperTable database table schema (continued)

Column name Constraints Data type Description

RivHelperRequestOutput Atom The response data.

The schema of the SNMPHelperConfig database table is described in Table 86.

Table 86. SnmpHelper.SnmpHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database
timeout, that is, how
long before the
database expires.

m_HelperReqTimeout Long64 The helper request
timeout, that is, how
long before each
request expires.

m_HelperStartupTimeout Long64 The default helper
startup timeout, that is,
the maximum time to
wait for a helper to
start up when
requested to.

m_HelperDoWeQuery Integer Indicates whether the
Helper Server queries
its database or whether
it queries the network
using a helper:

v 0: Do not use cache

v 1: Use cache

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs
that do not query the
database. This field
overrides
m_HelperDoWeQuery.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs
that always query the
database before
querying the network.
If the item is found in
the database then the
network is not queried.

m_HelperDoWeStore Integer Indicates whether the
Helper Server stores
any replies from the
helpers in its database:

v 0: Do not store
replies in database

v 1: Store replies in
database

242 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 86. SnmpHelper.SnmpHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs
that always store data
in the Helper Server
database. This field
overrides
m_HelperDoWeStore.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs
that never store data in
the Helper Server
databases. This field
overrides
m_HelperDoWeStore.

m_HelperDebugLevel

optional

Integer Sets the debug level of
the helper, printing to
m_HelperLogfile.

m_HelperLogfile

optional

Text The full path and file
for the logfile of the
current helper.

SNMP helper database configuration

The following insert provides an example configuration of the SNMP helper
database.
insert into SnmpHelper.SnmpHelperConfig
(

m_HelperDbTimeout,
m_HelperReqTimeout,
m_HelperStartupTimeout,
m_HelperDoWeQuery,
m_HelperDoWeStore

)
values
(

259200, 1200, 90, 0, 0
);

Telnet helper database schema
The TelnetHelper database is defined in $NCHOME/etc/ precision/
DiscoHelperServerSchema.cfg. Its fully qualified database table names are:
TelnetHelper.TelnetHelperTable; TelnetHelper.TelnetHelperConfig.

The TelnetHelperTable database table schema is described in Table 87.

Table 87. TelnetHelper.TelnetHelperTable database table schema

Column name Constraints Data type Description

RivHelperRequestReplyKey v PRIMARY
KEY

v NOT
NULL

v UNIQUE

Text A unique request reply
key interface to the
databases of the Helper
Server.

Appendix A. Discovery databases 243

Table 87. TelnetHelper.TelnetHelperTable database table schema (continued)

Column name Constraints Data type Description

RivHelperRequestGetKey NOT NULL Text A request get key
interface to the
databases of the Helper
Server.

RivHelperDbTimeToDie Long64 How long the requested
information is to live
within the Helper
Server.

m_HostIp NOT NULL Text IP address of the device
to interrogate.

m_TelnetCommand Text The Telnet command.

RivHelperRequestOutput Atom The response data.

Table 88 gives the schema of the TelnetHelperConfig table.

Table 88. TelnetHelper.TelnetHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database
timeout, that is, how long
before the database
expires.

m_HelperReqTimeout Long64 The helper request
timeout, that is, how long
before each request
expires.

m_HelperStartupTimeout Long64 The default helper
start-up timeout, that is,
the maximum time to
wait for a helper to start
up when requested.

m_HelperDoWeQuery Integer Indicates whether the
Helper Server queries its
database or whether it
queries the network using
a helper:

v 0: Do not use cache

v 1: Use cache

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that
do not query the database.
This field overrides
m_HelperDoWeQuery.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that
always query the database
before querying the
network. If the item is
found in the database
then the network is not
queried.

244 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 88. TelnetHelper.TelnetHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoWeStore Integer Indicates whether the
Helper Server stores any
replies from the helpers in
its database:

v 0: Do not store replies
in database

v 1: Store replies in
database

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that
always store data in the
Helper Server database.
This field overrides
m_HelperDoWeStore.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that
never store data in the
Helper Server databases.
This field overrides
m_HelperDoWeStore.

m_HelperDebugLevel

optional

Integer Sets the debug level of the
helper, printing to
m_HelperLogfile.

m_HelperLogfile

optional

Text The full path and file for
the logfile of the current
helper.

Telnet helper database configuration

The following example insert gives a typical configuration of the Telnet helper
database.
insert into TelnetHelper.TelnetHelperConfig
(

m_HelperDbTimeout,
m_HelperReqTimeout,
m_HelperStartupTimeout,
m_HelperDoWeQuery,
m_HelperDoWeStore

)
values
(

259200, 1200, 90, 0, 0
);

XMLRPC helper database schema
The XmlRpcHelper helper database is defined in $NCHOME/etc/precision/
DiscoHelperServerSchema.cfg. Its fully qualified database table names are:
XmlRpcHelper.XmlRpcHelperTable; XmlRpcHelper.XmlRpcHelperConfig.

The schema of the XmlRpcHelper.XmlRpcHelperTable database table is described
in Table 89 on page 246.

Appendix A. Discovery databases 245

Table 89. XmlRpcHelper.XmlRpcHelperTable database table schema

Column name Constraints Data type Description

RivHelperRequestReplyKey v PRIMARY
KEY

v NOT
NULL

v UNIQUE

Text A key interface to the databases
of the Helper Server for Reply
requests.

RivHelperRequestGetKey NOT NULL Text A key interface to the databases
of the Helper Server for Get
requests.

RivHelperDbTimeToDie Text How long the requested
information is to live within the
Helper Server.

m_port Atom Port of physical device.

m_DataSourceId Integer Data source of interest.

m_MethodCalled Text Method called.

m_MethodSignature Integer Method signature.

RivHelperRequestOutput Atom Response data.

The schema of the XmlRpcHelper.XmlRpcHelperConfig database table is described
in Table 90.

Table 90. XmlRpcHelper.XmlRpcHelperConfig database table schema

Column name Constraints Data type Description

m_HelperDbTimeout UNIQUE Long64 The helper database timeout, that
is, how long before the database
expires.

m_HelperReqTimeout Long64 The helper request timeout that is,
how long before each request
expires.

m_HelperStartupTimeout Long64 The default helper startup timeout,
that is, the maximum time to wait
for a helper to start up when
requested to.

m_HelperDoWeQuery Integer Indicates whether the Helper
Server queries its database or
whether it queries the network
using a helper:

v 0: Do not use cache

v 1: Use cache

m_HelperDoNotQueryVBs

optional

Object type
varbinds

List of helper inputs that do not
query the database. This field
overrides m_HelperDoWeQuery.

m_HelperDoQueryVBs

optional

Object type
varbinds

List of helper inputs that always
query the database before querying
the network. If the item is found in
the database then the network is
not queried.

246 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 90. XmlRpcHelper.XmlRpcHelperConfig database table schema (continued)

Column name Constraints Data type Description

m_HelperDoWeStore Integer Indicates whether the Helper
Server stores any replies from the
helpers in its database:

v 0: Do not store replies in
database

v 1: Store replies in database

m_HelperDoStoreVBs

optional

Object type
varbinds

List of helper inputs that always
store data in the Helper Server
database. This field overrides
m_HelperDoWeStore.

m_HelperDoNotStoreVBs

optional

Object type
varbinds

List of helper inputs that never
store data in the Helper Server
databases. This field overrides
m_HelperDoWeStore.

m_HelperDebugLevel

optional

Integer Sets the debug level of the helper,
printing to the file specified in
m_HelperLogfile.

m_HelperLogFile

optional

Text The full path and file for the logfile
of the current helper.

XMLRPC helper database configuration

The following insert provides a typical example configuration of the
XmlRpcHelper database. This insert specifies the following settings:
v Helper database expires after 3 days.
v Each helper database request timeout expires after 20 minutes.
v Maximum time to wait for a helper to start up when requested is 90 seconds.
v Helper Server does not query its database.
v Helper Server does not store any replies from the helpers in its database.
insert into XmlRpcHelper.XmlRpcHelperConfig
(

m_HelperDbTimeout,
m_HelperReqTimeout,
m_HelperStartupTimeout,
m_HelperDoWeQuery,
m_HelperDoWeStore

)
values
(

259200,
1200,
90,
0,
0
);

Appendix A. Discovery databases 247

Individual helpers databases
In addition to the DiscoHelperServerSchema.cfg, each of the helpers has an
associated configuration file that governs the behavior of the helper. The following
topics describe the databases for the individual configuration files.

The ARP helper database
The ARP helper database is defined by the DiscoARPHelperSchema.cfg
configuration file Its fully qualified database table name is
ARPHelper.configuration.

The ARPHelper.configuration database, described in Table 91, defines the number
of threads the helper uses.

Table 91. ARPHelper.configuration database table schema

Column Name Constraints Data type Description

m_NumThreads None Integer The number of threads to be used by
the helper.

Related reference:
“DiscoARPHelperSchema.cfg configuration file” on page 55
The DiscoARPHelperSchema.cfg configuration file performs IP address to MAC
address resolution.

The DNS helper database
The DNS helper database is defined by the DiscoDNSHelperSchema.cfg
configuration file. Its fully qualified database table names are:
DNSHelper.configuration; DNShelper.methods.

The DNSHelper.configuration table, described must contain only one record.

Table 92. DNSHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be used by the
helper.

m_MethodList List of text An ordered list of the methods for name
retrieval.

m_TimeOut Integer The maximum time to wait for a response
from a device (seconds).

Table 93. DNShelper.methods database table schema

Column name Constraints Data type Description

m_MethodName v PRIMARY
KEY

v NOT
NULL

v UNIQUE

Text The name of the method.

m_MethodType Integer The type of the method:

v 0: System

v 1: DNS

v 2: File

248 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 93. DNShelper.methods database table schema (continued)

Column name Constraints Data type Description

m_NameServerAddr Text The IP address of the DNS server
(specified as a text string). If no value
is specified, /etc/resolv.conf is read.

m_NameDomain Text Domain name; for example, abcd.com.

m_NameDomainList Text Contains a list of expected domain
suffixes. If you expect the discovery
to return some or all devices names
with domain suffixes already
appended, then you can specify a list
of expected domain suffixes in this
column.
Note: The domain suffix value
specified in m_NameDomain is not
appended to any device names
returned by the discovery that have
any of the suffixes listed in
m_NameDomainList.

m_FileName Text The filename, if appropriate.

m_FileOrder Integer The order of the files:

v 0: Name first, then IP address

v 1: IP address, then name

m_TimeOut Integer Time out for the request in seconds.

Related reference:
“DiscoDNSHelperSchema.cfg configuration file” on page 56
The DiscoDNSHelperSchema.cfg configuration file defines access to DNS, which
enables the discovery to do domain name lookups, by configuring the DNS helper.

The Ping helper database
The Ping helper database is defined by the DiscoPingHelperSchema.cfg
configuration file. Its fully qualified database table name is
pingHelper.configuration.

The schema of the pingHelper.configuration database table is described in Table 84
on page 240. It must contain only one record.

Although pinging broadcast and multicast addresses allows devices to be
discovered quicker than other detection methods, it is not advised to do so under
certain network conditions; for instance, when the network is heavily congested.

Table 94. pingHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be
used by the helper.

Appendix A. Discovery databases 249

Table 94. pingHelper.configuration database table schema (continued)

Column name Constraints Data type Description

m_TimeOut Integer The maximum time to wait
for a reply from a pinged
address, in milliseconds. If
you are running the
TraceRoute agent you may
need to increase this value,
depending on network
conditions.

m_NumRetries Integer The number of times a
device is to be re-pinged.

m_InterPingTime Integer The time interval in
milliseconds between
successive ping attempts of
subnet addresses.

m_Broadcast Integer Flag used to enable or
disable broadcast address
pinging:

v (1) Enable

v (0) Disable

m_Multicast Integer Flag used to enable or
disable multicast address
pinging:

v (1) Enable

v (0) Disable

Related reference:
“DiscoPingHelperSchema.cfg configuration file” on page 62
The DiscoPingHelperSchema.cfg configuration file defines how devices are to be
pinged.

The SNMP helper database
The SNMP helper database is defined by the DiscoSnmpHelperSchema.cfg
configuration file. Its fully qualified database table name is
snmpHelper.configuration.

The SNMP helper database consists of the snmpHelper.configuration table,
described in Table 95, which must contain only one record.

Table 95. snmpHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads None Integer The number of threads to be used by
the helper.

m_TimeOut None Integer The maximum time to wait for a reply
from a device, in milliseconds.

m_NumRetries None Integer The number of attempts to retrieve
SNMP variable(s) from a device.

250 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related reference:
“DiscoSnmpHelperSchema.cfg configuration file” on page 70
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.

The Telnet helper database
The Telnet helper database is defined by the DiscoTelnetHelperSchema.cfg
configuration file. Its fully qualified database table names are:
telnetHelper.configuration; telnetHelper.deviceConfig.

The telnetHelper.configuration table specifies the general rues of receiving
information from remote devices.

Table 96. telnetHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads Integer The number of threads to be used by the
helper. If you change this value, be sure
that your system is configured to allow
at least this number of concurrent Telnet
sessions.

m_TimeOut Integer The maximum time to wait for access to
a device (milliseconds).

m_Retries Integer The number of times to retry the device.

The telnetHelper.deviceConfig table sets device-specific configuration options.

Table 97. telnetHelper.deviceConfig database table schema

Column name Constraints
Data
type Description

m_SysObjectId

optional

Text The sysObjectID MIB variable to
match for this configuration entry. The
entry with the longest OID match will
be the entry used. For example, if you
specify a value of 1.3.6.1.4.1.9.1 then
all devices with OIDs of the form
1.3.6.1.4.1.9.1.* will be matched. Cisco
IOS devices have OIDs of the form
1.3.6.1.4.1.9.1.*.

This field is ignored if m_IpOrSubNet
is specified.

m_IpOrSubNet Text The IP or fully qualified subnet
address of the device corresponding to
a particular configuration. If this is not
specified, the configuration is used as
the default subnet address.

m_NetMaskBits Integer The number of most significant bits in
the netmask. This number must be
specified if m_IpOrSubNet is specified.

m_PageLengthCmd Text The command to issue in order to set
the output page length.

Appendix A. Discovery databases 251

Table 97. telnetHelper.deviceConfig database table schema (continued)

Column name Constraints
Data
type Description

m_PageLength Integer The output page length size. This is
set to 0 by default; that is, no paging.

If you set a page length size, you must
also insert a value into the
m_PageLengthCmd column in order to
set a page length command.

m_ContinueMsg Text The expected prompt from the remote
device between paged output; for
example, "Do you want to continue".
Regular expressions are valid entries.

m_ContinueCmd Text The response to send to the remote
device in order for it to continue the
paged output. This is usually set to
"y".

You must take care setting this value,
as some devices require a carriage
return after the command and some
do not. For maximum flexibility, a
return is not added by default. It must
be specified explicitly using a trailing
Ctrl-M in the string.

m_TransmissionDelay Integer This option allows you to customize
the delay used by ncp_dh_telnet when
transmitting data to a device. This
may be useful if data loss or device
issues occur when using the default
transmission delay setting.

Related reference:
“DiscoTelnetHelperSchema.cfg configuration file” on page 71
The DiscoTelnetHelperSchema.cfg configuration file defines the operation of the
Telnet helper, which returns the results of a Telnet operation into a specified
device.

The XMLRPC helper database
The XMLRPC helper database is defined by the DiscoXmlRpcHelperSchema.cfg
configuration file. Its fully qualified database table name is
xmlRpcHelper.configuration.

The schema of the xmlRpcHelper.configuration database table is described in
Table 98. It must contain only one record.

Table 98. xmlRpcHelper.configuration database table schema

Column name Constraints Data type Description

m_NumThreads None Integer The number of threads to be used
by the helper.

252 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 98. xmlRpcHelper.configuration database table schema (continued)

Column name Constraints Data type Description

m_TimeOut None Integer The maximum time to wait for a
reply from an EMS collector, in
milliseconds. If you are running the
TraceRoute agent you may need to
increase this value, depending on
network conditions.

Related reference:
“DiscoXmlRpcHelperSchema.cfg configuration file” on page 74
The DiscoXmlRpcHelperSchema.cfg configuration file can be used to configure the
XML-RPC helper, which enables Network Manager to communicate with EMS
collectors using the XML-RPC interface.

Tracking discovery databases
During the discovery process, the discovery engine, ncp_disco, records every
element discovered in the network, whether it has been processed or not. The
instrumentation and translations databases are used for this purpose. These
databases can be interrogated at any time to view the number of device types and
categories that have been discovered.

The translations, instrumentation, and workingEntities databases record the known
network entities and technologies, and can be used to track the progress of the
discovery.

translations database
The translations database is defined in $NCHOME/etc/precision/DiscoSchema.cfg.
It has several fully qualified database table names.

The fully qualified database table name for the translations database are:
v translations.ipToBaseName
v translations.vlans
v translations.NAT
v translations.NATtemp
v translations.NATAddressSpaceIds

translations.ipToBaseName table
The ipToBaseName table is a registry of discovered devices and the IP addresses
associated with those devices.

When a device has multiple interfaces, and therefore multiple IP addresses, the
Associated Address agent downloads all the associated addresses, stores them in
the ipToBaseName table and allows the appropriate discovery agents to discover
the device. Any subsequent attempt to discover the device by means of another of
its IP addresses is halted when the Associated Address agent checks the
ipToBaseName table, that is, before the device details are passed to the appropriate
discovery agent.

Table 99. translations.ipToBaseName database table schema

Column name Constraints Data type Description

m_BaseName NOT NULL Text Base name of the discovered entity.

Appendix A. Discovery databases 253

Table 99. translations.ipToBaseName database table schema (continued)

Column name Constraints Data type Description

m_BaseAddress NOT NULL Text Base address of the discovered entity.

m_WorkAddress NOT NULL Text The address that was used for data
retrieval.

m_IpAddress NOT NULL Text IP address of the entity.

m_AddressSpace Text The name of the NAT address space to
which the device belongs. This value is
set in the
translations.NATAddressSpaceIds table.
If the discovery is not using NAT, or if
the device is in the public domain, this
value is NULL.

m_InScope Boolean
integer

Indicates whether the value of the field
m_IpAddress is in scope.

m_Protocol NOT NULL Integer Protocol for this address. This field can
take the following values:

v 1: IPv4

v 3: IPv6

m_IsManagementIP Boolean
integer

Indicates whether this is a management
IP address.

m_IsOutOfBand Boolean
integer

Indicates whether this is an out of band
address.

m_Name Text Name of interface with IP if known.

translations.vlans table
The vlans table holds a list of devices that are part of Virtual Local Area Networks
(VLANs). Each record in the vlans table maps the device to the VLAN to which it
belongs.

Table 100. translations.vlans database table schema

Column name Constraints Data type Description

m_Name v PRIMARY KEY

v NOT NULL

Text The name of the device
associated with this entry.

m_VlanID v PRIMARY KEY

v NOT NULL

Text The VLAN identifier on the
device.

m_Subnet Text The subnet with which the VLAN
appears to be associated.

m_NetMask Text The subnet mask.

m_AddressSpace Text The name of the NAT address
space to which the device
belongs. This value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the
public domain, this value is
NULL.

254 IBM Tivoli Network Manager IP Edition: Discovery Guide

translations.NAT table
The NAT table is used to hold static NAT mappings. The mapped devices are
discovered even if they are outside the scope of the discovery.

Table 101. translations.NAT database table schema

Column name Constraints
Data
type Description

m_OutsideGlobalAddr v PRIMARY KEY

v NOT NULL

Text The public address.

m_InsideLocalAddr NOT NULL Text The private address.

m_InsideGlobalAddr Text This column is currently not used.

m_OutsideLocalAddr Text This column is currently not used.

m_AddressSpace Text The name of the NAT address space
to which the device belongs. This
value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the public
domain, this value is NULL.

translations.NATtemp
The NATtemp table is used to hold NAT mappings from a particular NAT
gateway. This enables the discovery process to compare the old and new NAT
mappings and initiate a partial or full rediscovery if necessary.

Table 102. translations.NATtemp database table schema

Column name Constraints Data type Description

m_OutsideAddr v PRIMARY
KEY

v NOT NULL

Text The public address of the device.

m_InsideAddr NOT NULL Text The private address of the device.

m_AddressSpace Text The name of the NAT address space
to which the device belongs. This
value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the public
domain, this value is NULL.

translations.NATAddressSpaceIds table
The NATAddressSpaceIds table is used to identify the IP addresses of NAT
gateways and specify an address-space identifier for each one.

Table 103. translations.NATAddressSpaceIds database table schema

Column name Constraints Data type Description

m_NATGatewayIP v PRIMARY
KEY

v NOT NULL

Text The IP address of the gateway.

Appendix A. Discovery databases 255

Table 103. translations.NATAddressSpaceIds database table schema (continued)

Column name Constraints Data type Description

m_AddressSpaceId Text The address space identifier to be
used for all devices in the NAT
domain belonging to the gateway
whose IP address is specified in
m_NATGatewayIP.

Related tasks:
“Defining address spaces for NAT gateways” on page 120
To specify the IP address of your NAT gateways and the address space identifier
you want to use for each associated NAT domain, edit DiscoConfig.cfg to create
or amend an insert into translations.NATAddressSpaceIds.

instrumentation database schema
The instrumentation database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. It lists discovered devices grouped by technology. You can do
OQL queries to retrieve the names of all discovered subnets, VLANs, Frame Relay
devices, and so on.

The fully qualified database table names for the instrumentation database are:
v instrumentation.ipAddresses
v instrumentation.name
v instrumentation.subNet
v instrumentation.vlan
v instrumentation.frameRelay
v instrumentation.ciscoFrameRelay
v instrumentation.hsrp
v instrumentation.pnniPeerGroup
v instrumentation.fddi

instrumentation.ipAddresses table
The ipAddresses table contains a record of the unique IP addresses discovered in
the network.

Table 104. instrumentation.ipAddresses database table schema

Column name Constraints Data type Description

m_UniqueAddress v PRIMARY KEY

v NOT NULL

v UNIQUE

Text The IP address of a discovered
network entity.

256 IBM Tivoli Network Manager IP Edition: Discovery Guide

instrumentation.name table
The name table contains a record of the unique name of every discovered device.

Table 105. instrumentation.name database table schema

Column name Constraints Data type Description

m_Name v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text The name of a discovered network
entity.

instrumentation.subNet table
The subNet table contains a record of every discovered subnet address and mask.

Table 106. instrumentation.subNet database table schema

Column name Constraints Data type Description

m_SubNet v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text The subnet address of a discovered
subnet.

m_NetMask v NOT NULL

v UNIQUE

Text The subnet mask of a discovered
subnet.

instrumentation.vlan table
The vlan table contains a record of every discovered VLAN.

Table 107. instrumentation.vlan database table schema

Column name Constraints Data type Description

m_Vlan UNIQUE Integer The ID of the discovered VLAN.

instrumentation.frameRelay table
The frameRelay table contains a record of every discovered Frame Relay device.

Table 108. instrumentation.frameRelay database table schema

Column name Constraints Data type Description

m_IfDlci v PRIMARY
KEY

v NOT NULL

v UNIQUE

Integer The Frame Relay device Data Link
Connection Identifier.

m_IfIndex v PRIMARY
KEY

v NOT NULL

Integer The unique value for each device
interface.

Appendix A. Discovery databases 257

instrumentation.ciscoFrameRelay table
The ciscoFrameRelay table contains a record of every discovered Cisco Frame
Relay device.

Table 109. instrumentation.ciscoFrameRelay database table schema

Column name Constraints Data type Description

m_UniqueKey v NOT NULL

v UNIQUE

Text A combination of the IP Address, the
FRIfIndex, and the FRDlci.

m_FRIfIndex v PRIMARY
KEY

v NOT NULL

Integer The unique value for each device
interface.

m_FRDlci v PRIMARY
KEY

v NOT NULL

v UNIQUE

Integer The Frame Relay device Data Link
Connection Identifier.

instrumentation.hsrp table
The hsrp table contains a record of every discovered Hot Standby Router Protocol
(HSRP) device.

Table 110. instrumentation.hsrp database table schema

Column name Constraints Data type Description

m_GroupAddress v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text The group address of the
device.

m_PrimaryAddress Text The primary address of
the device.

m_StandbyAddress Text The standby address of
the device.

instrumentation.pnniPeerGroup table
The pnniPeerGroup table contains the lowest level Peer Group Identifiers of PNNI
devices that have been discovered. Logical PNNI Peer Groups IDs are not stored.

Table 111. instrumentation.pnniPeerGroup database table schema

Column name Constraints Data type Description

m_PeerGroupId v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text The lowest level PNNI peer
group identifier.

258 IBM Tivoli Network Manager IP Edition: Discovery Guide

instrumentation.fddi table
The fddi table contains the Fibre Distributed Data Interface (FDDI) nodes that have
been discovered.

Table 112. instrumentation.fddi database table schema

Column name Constraints Data type Description

m_UniqueAddress v PRIMARY
KEY

v NOT NULL

Text The unique address of the
node.

m_StationManagmentTask v PRIMARY
KEY

v NOT NULL

Integer The station management task
for that node.

workingEntities database
The workingEntities database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. Its fully qualified database table names are:
workingEntities.finalEntity; workingEntities.containment.

The workingEntities database provides a central repository for information about
discovered entities and the containment details associated with each of these
entities. However, this database is populated only at the end of the discovery
process.

workingEntities.finalEntity table
The finalEntity table is a central repository for information about discovered
entities.

Table 113. workingEntities.finalEntity database table schema

Column name Constraints
Data
type Description

m_Name v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text Unique name of the discovered
entity.

m_Creator NOT NULL Text Name of agent (or finder) that
discovered the entity.

m_ObjectId Text Device class (a textual representation
of the ASN.1 address).

m_Description Text Description of the device, taken from
the sysDescr MIB variable for the
entity.

m_UniqueAddress Text IP address of the network entity.

m_IsActive Externally
defined Boolean
data type

Boolean
Integer

Indicates whether the entity is active:

(2) Indicates that the entity is
discovered but is not in scope.
Entities that are not in scope are not
monitored by Network Manager.

(1) Entity is active.

(0) Entity is inactive.

Appendix A. Discovery databases 259

Table 113. workingEntities.finalEntity database table schema (continued)

Column name Constraints
Data
type Description

m_HaveAccess Externally
defined Boolean
data type

Boolean
integer

Flag indicating whether SNMP access
to the device is available:

v 1: SNMP access is available

v 0: No SNMP Access

m_EntityType Externally
defined
entityType data
type

Integer Element type description of the
discovered entity:

v 0: Unknown type

v 1: Base entity

v 2: Local neighbor

v 3: Remote neighbor

m_BaseName Text The name of the Base Entity for this
device.

m_AddressSpace Text The name of the NAT address space
to which the device belongs. This
value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the public
domain, this value is NULL.

m_ExtraInfo Externally
defined vblist
data type

Object Extra information requested by the
agent.

m_LocalNbr Externally
defined vblist
data type

Object Information about the local neighbor.

workingEntities.containment table
The containment table is a central repository for information about containment
information for discovered entities. It shows the containment relationships between
all entities in the finalEntity table.

As an example of how the containment table works, assume the finalEntity table
includes the following distinct entities:
v A device with IP address 1.2.3.4

v An interface on this device, 1.2.3.4[0[1]]

The finalEntity table provides no containment information for these two entities. In
other words, it does not indicate that the interface 1.2.3.4[0[1]] is physically
contained within the device 1.2.3.4. This containment information is held within
the containment table, as follows:
m_Container=’1.2.3.4’
m_Part=’1.2.3.4[0[1]]’
m_IsPhysical=1
m_LinkType=1

Note that m_Container and m_Part are each unique names of entities on the
network, each with a unique m_Name in the finalEntity table.

260 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 114. workingEntities.containment database table schema

Column name Constraints Data type Description

m_Container v PRIMARY KEY

v NOT NULL

Text The name of an object which contains
something. This object refers to an
entity on the network and
corresponds to an entity with its own
entry and unique m_Name in the
workingEntities.finalEntity table.

m_Part v PRIMARY KEY

v NOT NULL

Text The name of the object which is
contained. This object refers to an
entity on the network and
corresponds to an entity with its own
entry and unique m_Name in the
workingEntities.finalEntity table.

m_IsPhysical Boolean
integer

Flag indicating whether the
containment is physical or logical:

v 1: Physical Containment

v 0: Logical Containment

m_LinkType Integer Value indicating mode of data
transfer between m_Container and
m_Part. The following values are
possible:

v 0: No data is transmitted.

v 1: Data is transmitted both ways.

v 2: Data travels from m_Container
to m_Part.

v 3: Data travels from m_Part to
m_Container

workingEntities.interfaceMapping
The interfaceMapping table enables the stitching to quickly identify interfaces.

The following table lists the columns in the interfaceMapping table.

Note: Not all the fields in this table are populated; however, the use of this table
provides a fast way of looking up data.

Table 115. workingEntities.interfaceMapping database table schema

Column name Constraints Data type Description

m_Name not null Text Unique name of an interface on the
network.

m_IfIndex Integer SNMP ifIndex.

m_InterfaceId Text Interface identifier.

m_EntPhysIndex Integer Entity MIB physical Index if present.

m_IfDescr Text Interface RFC.ifDescr.

m_IfName Text Interface RFC ifName.

m_IfAlias Text Interface RFC ifAlias field.

m_IfType Integer Interface RFC ifType.

m_PhysAddress Text MAC address for this entity if
present.

Appendix A. Discovery databases 261

Table 115. workingEntities.interfaceMapping database table schema (continued)

Column name Constraints Data type Description

m_BaseName Not null Text Name of the "Base Entity" for this
device.

m_AddressSpace Text Name of the address space this
device is on. For public devices the
field is null.

Working topology databases
The discovery engine, ncp_disco, uses a series of databases to perform the data
processing stages of the discovery cycle. Stitchers operate on these databases to
knit together a network topology and create the containment model.

The stitchers produce the various network topologies, such as layer 2 and layer 3
topologies, by amalgamating the information in the discovery agents returns tables
into a single cumulative topology within the fullTopology database.

fullTopology database schema
The fullTopology database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. Its fully qualified database table name is
fullTopology.entityByNeighbor.

The fullTopology database holds the generated topology. On completion of the
data collection phase of the discovery, the stitchers merge the information that has
been retrieved by the discovery agents to form a single topology, which at this
stage is in a name-to-name format.

fullTopology.entityByNeighbor table
The entityByNeighbor table contains information about connectivity between
discovered devices.

Table 116. fullTopology.entityByNeighbor database table schema

Column name Constraints Data type Description

m_Name v PRIMARY
KEY

v NOT NULL

Text Unique name of an entity on the
network.

m_NbrName v PRIMARY
KEY

v NOT NULL

Text The name of the device that is
connected to the unique network
entity.

m_NbrType Externally
defined
connectionType
data type

Integer Integer representation of the type of
connection between the network
entity and its neighbor:

v 2: Main-to-Local

v 3: Local-to-Remote

262 IBM Tivoli Network Manager IP Edition: Discovery Guide

scratchTopology database schema
The scratchTopology database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg. Its fully qualified database table name is:
scratchTopology.entityByName.

The scratchTopology database holds the containment model that is derived from
the fullTopology database (and created by stitchers). This is the version of the
topology that is sent to the MODEL component.
Related concepts:
“Filters” on page 5
Use prediscovery filters to increase the efficiency of discovery and post-discovery
filters to prevent instantiation of devices.
Related tasks:
“Setting discovery filters” on page 28
Use filters to filter out devices either before discovery or after discovery. You can
filter out devices based on a variety of criteria, including location, technology, and
manufacturer. Filters provide additional restrictions to those defined in the scope
zones.
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.

scratchTopology.entityByName table
The entityByName table contains the network model derived from the
fullTopology database.

Table 117. scratchTopology.entityByName database table schema

Column name Constraints Data type Description

EntityName v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text Unique name of the network
entity.

BaseName Text Unique base name of an
entity.

Address List of text List of OSI model layer 1-7
addresses for the entity.

Description Text Value of sysDescr MIB
variable or other suitable
description of the entity.

EntityType Externally
defined
entityTypes
data type

Integer Element type of the entity:

v 0: Unknown

v 1: Chassis

v 2: Interface

v 3: Logical interface

v 4: Vlan object

v 5: Card

v 6: PSU

v 7: Subnet

v 8: Module

Appendix A. Discovery databases 263

Table 117. scratchTopology.entityByName database table schema (continued)

Column name Constraints Data type Description

EntityOID Text The device class to which the
network entity belongs. This
is a textual representation of
the ASN.1 address.

Status Externally
defined
Boolean data
type

Boolean integer Flag indicating the state of
the entity:

v 1: Active

v 0: Not Active

IsActive Externally
defined
Boolean data
type

Boolean integer Flag indicating whether or
not the entity is active:

v 1: Active

v 0: Not Active

Contains List of text List of elements or other
containers contained within
the current network entity.

UpwardConnections List of text List of containers that
contain this entity.

RelatedTo List of text List of entities that are
connected to the network
entity.

LingerTime Integer You can set the LingerTime
for an entity in customized
stitchers to determine how
ncp_model handles the
entity when ncp_disco sends
the topology to ncp_model.

The LingerTime value
determines how many
discoveries an entity can fail
to be found in before it is
assumed to have been
removed from the network
and its record is removed
from the topology. If set to
zero, the entity is deleted
from ncp_model
immediately when the
discovery process updates
the topology in ncp_model.

ExtraInfo Externally
defined vblist
data type

Any additional information.

264 IBM Tivoli Network Manager IP Edition: Discovery Guide

rediscoveryStore database
The rediscoveryStore database is used for comparison purposes in rediscovery
mode. It is defined in $NCHOME/etc/precision/ DiscoSchema.cfg. Its fully
qualified database table names are: rediscoveryStore.dataLibrary;
rediscoveryStore.rediscoveredEntities

The rediscoveryStore database holds information from previous discovery cycles
that can be used for comparison purposes during a full or partial rediscovery.

rediscoveryStore.dataLibrary table
The dataLibrary table is used as a reference point during rediscovery mode to
compare the previous and present states.

Table 118. rediscoveryStore.dataLibrary database table schema

Column name Constraints Data type Description

m_Name Text Unique name of an entity on the
network.

m_UniqueAddress Text The IP address of a discovered
network entity.

m_CompareDb NOT NULL Text The entity that is used to compare
this network entity.

rediscoveryStore.rediscoveredEntities table
The rediscoveredEntites table stores entities found during a rediscovery.

Table 119. rediscoveryStore.rediscoveredEntities database table schema

Column name Constraints Datatype Description

m_Name Text Unique name of an entity on the
network.

m_UniqueAddress Text The IP address of a discovered
network entity.

m_PhysAddr Text The physical address of the entity.

m_OldBaseName The base name of the entity prior
to rediscovery

m_NewBaseName The base name of the entity after
rediscovery.

Topology manager database
The topology manager, ncp_model, stores the topology data following a discovery
and sends the topology data to the topology database (NCIM), where it can be
queried using SQL. When ncp_model starts up, it waits for the discovery engine to
finish the discovery process, create the scratch topology, and insert it into the
ncp_model database.

Table 120. MODEL (ncp_model) databases

Database Description

master The central store for the network topology.

model Used to track topology updates.

Appendix A. Discovery databases 265

master database schema
The master database is defined in $NCHOME/etc/precision /ModelSchema.cfg. Its
fully qualified database table names are: master.entityByName;
master.entityByNeighbor; master.containers. The master database holds all the
network entities, their containment, and their connections.

master.entityByName table
The entityByName table holds information about all the discovered network
entities. This table is active, populated with the information received from DISCO.
Entries made into the entityByName table are also used to populate the containers
table.

Table 121. master.entityByName database table schema

Column name Constraints Data type Description

ObjectId v PRIMARY
KEY

v NOT NULL

v UNIQUE

Long
integer

The unique Object ID of the network
entity.

EntityName v PRIMARY
KEY

v NOT NULL

v UNIQUE

Text Unique descriptive name of a network
entity.

Address List of text List of OSI model layer 1 -7 addresses
for the entity.

Description Text Value of sysDescr MIB variable or
other suitable description of the entity.

EntityType Externally
defined
entityTypes
data type

Integer Element type of the entity.

v 0: Unknown

v 1: Chassis

v 2: Interface

v 3: Logical interface

v 4: VLAN object

v 5: Card

v 6: PSU

v 7: Logical collection

v 8: Module

ClassName Text Class name of network entity (if
applicable).

EntityOID Text Value of sysOID MIB variable of the
entity.

Status Externally
defined status
data type

Integer This field is populated by the
Discovery engine, ncp_disco with the
value of the field m_HaveAccess. This
field therefore indicates whether
ncp_disco acquired SNMP access to
the device.

Security Text Password to access network entity (if
applicable).

RelatedTo List of text List of entities that are connected to
the network entity.

266 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 121. master.entityByName database table schema (continued)

Column name Constraints Data type Description

Contains List of text List of elements or other containers
contained within the current network
entity.

UpwardConnections List of text List of containers that contain this
entity.

IsActive Externally
defined Boolean
data type

Boolean
Integer

Flag indicating whether an Active
Object Class is needed:

v 1: Active Object Class is needed

v 0: Active Object Class is not needed

CreateTime Time Creation time of network entity record
in table.

ChangeTime Time Time of last modification to the
network entity record.

ActionType Externally
defined actions
data type

Integer The value of this field has significance
when the record is broadcast on the
message bus. It indicates the type of
topology update that is being
broadcast. This field can take the
following values:

0 New

1 Update

2 Delete

3 Undefined

ExtraInfo Externally
defined vblist
data type

Object A list of extra information.

LingerTime NOT NULL

Default=3

Integer The linger time is used during
rediscovery so that the new topology
can be merged with the existing
topology.

The value of LingerTime is
decremented if the entity is not
present in the new topology. The
entity is only removed from the
topology when the value of
LingerTime reaches 0.

master.entityByNeighbor table
The entityByNeighbor table holds connectivity information for each network entity.

Table 122. master.entityByNeighbor database table schema

Column name Constraints Data type Description

LeftId v PRIMARY KEY

v NOT NULL

Long integer The Object ID of the left-hand side
connection.

LeftName v PRIMARY KEY

v NOT NULL

Text The entity name of the left-hand side
connection.

Appendix A. Discovery databases 267

Table 122. master.entityByNeighbor database table schema (continued)

Column name Constraints Data type Description

RightName v PRIMARY KEY

v NOT NULL

Text The entity name of the right-hand
side connection.

Speed Long64 The speed of the connection in bits
per second (bps).

Protocol Externally
defined protocol
data type

Integer The transmission protocol type used
by the connection.

RelType Externally
defined
connectionType
data type

Integer The type of relationship.

Duplex Externally
defined Boolean
data type

Boolean
Integer

Flag indicating whether link is
bidirectional (that is, full duplex):

v 1: Link is bidirectional.

v 0: Link is not bidirectional.

master.containers table
The containers table uses the containment model to consider each network entity
as being contained by other network entities. The table, which is automatically
populated as a result of entries made into the entityByName table, shows the
parent of each entity, that is, the object that contains the present entity.

Table 123. master.containers database table schema

Column name Constraints Data type Description

ObjectId v PRIMARY KEY

v NOT NULL

Long integer The unique Object ID of the network
entity.

EntityName v PRIMARY KEY

v NOT NULL

Text Descriptive name of container
network entity.

MemberName NOT NULL Text The member name of the contained
object.

model database schema
The model database is defined in $NCHOME/etc/precision/ ModelSchema.cfg. Its
fully qualified database table names are: model.config; model.statistics. This
database stores information about the topology so that during rediscovery,
topologies can be merged efficiently.

268 IBM Tivoli Network Manager IP Edition: Discovery Guide

model.config table
The model.config table stores the configuration information that is used by
MODEL during rediscovery.

Table 124. model.config database table schema

Column name Constraints Data type Description

LingerTime v PRIMARY KEY

v NOT NULL

v UNIQUE

Integer LingerTime value for the topology.

ChassisCreation
Events

NOT NULL Boolean Integer Generates ItnmEntityCreation and
ItnmEntityDeletion events for chassis entities.

IpInterfaceCreation
Events

NOT NULL Boolean Integer Generates ItnmEntityCreation and
ItnmEntityDeletion events for interfaces that have
their own IP address.

MaintenanceState
Events

NOT NULL Boolean Integer Generates ItnmMaintenanceState events for
chassis entities and for interfaces that have their
own IP address.

ManagedStatusUpdate
Interval

NOT NULL Integer Interval in seconds at which ncp_model scans the
NCIM managedStatus table for changes. This is
the maximum time the poller should take to react
to changes in managed status made in any of the
following GUIs: Network Views, Network Hop
View, Structure Browser. Default value 30
seconds.

DiscoveryUpdateMode NOT NULL Integer For internal system use only. Prior to a batch
update, ncp_disco sets this value to 1 for a partial
discovery, or to 0 for a full discovery.

Any combination of the flags ChassisCreationEvents, IpInterfaceCreationEvents,
and MaintenanceStateEvents can be turned on and off. The default is for all three
to be disabled.

Note: If you have a network that contains routers with a large number of IP
addresses, then enabling the IpInterfaceCreationEvents flag can might generate a
large number of events in the Object Server.

model.profilingData
The model.profilingData table stores data associated with time and memory
expended during the discovery. This table includes information on how long it
took to transfer the discovery profiling data to the NCIM topology database.

Table 125. model.profilingData database table schema

Column name Constraints Data type Description

BatchStartTime v PRIMARY KEY

v NOT NULL

v UNIQUE

Integer The time that a batch update from the Discovery
engine, ncp_disco, started.

BatchStartSize NOT NULL Integer Number of records in the batch received.

BatchStartMem NOT NULL 64-bit integer Memory usage when batch started.

BatchEndTime Integer The time a batch update from the Discovery
engine, ncp_disco, ended.

Appendix A. Discovery databases 269

Table 125. model.profilingData database table schema (continued)

Column name Constraints Data type Description

BatchEndSize Integer Number of records at the end.
Note: This value could be larger than at the start
if subsequent batches got merged in.

BatchEndMem 64-bit integer Memory usage when batch ended.

EntityCount Integer Number of entities after the batch update.

ChassisCount Integer Number of chassis devices after the batch update.

InterfaceCount Integer Number of interfaces after the batch update.

model.statistics table
The model.statistics table stores information about previous discoveries.

Table 126. model.statistics database table schema

Column name Constraints Data type Description

TopologyCount v PRIMARY
KEY

v NOT NULL

v UNIQUE

Long A count of the number of times
the topology has been sent
from DISCO to MODEL.

TopologySendFinished Integer Indicates whether DISCO has
finished transferring the
topology to MODEL.

This column is set to 0 when
the SendTopologyToModel.stch
stitcher begins sending the
topology, and set to 1 when it
has completed sending the
topology.

InsertCount Long The number of entities inserted
into the topology.

UpdateCount Long The number of entities updated
in the topology.

DeleteCount Long The number of entities deleted
from the topology.

Failover database
Failover recovery with the failover database is not to be confused with agent and
finder failover recovery, which are configured directly from the disco.config table.
When selected, agent and finder failover recovery operate regardless of whether
recovery with the failover database is implemented.

If the m_WriteTablesToCache column of the disco.config table is set to 1 (true), data
is cached during the discovery process to enable data recovery in the event that
the Discovery engine, ncp_disco, fails. A discovery running in this mode is slower
than a standard discovery, because of the extra time required to store data on the
disk throughout the discovery process.

270 IBM Tivoli Network Manager IP Edition: Discovery Guide

Ignored cached data
If DISCO is restarted in failover recovery mode, any cached data for a group of
tables are ignored.

The cached data for the following tables are ignored when DISCO is restarted in
failover recovery mode:
v disco.config
v disco.managedProcesses
v disco.agents
v The entire scope database
v failover.config
v failover.doNotCache
v failover.restartPhaseAction

For the above tables, only the insertions specified in the schema file at the time of
the restart are registered.

The failover database schema
The failover database is defined in $NCHOME/etc/precision/DiscoSchema.cfg. Its
fully qualified database table names are: failover.config; failover.status;
failover.findRateDetails; failover.doNotCache; failover.restartPhaseAction.

failover.config table
There must never be more than one insert into the failover.config table.

Table 127. failover.config database table schema

Column name Constraints Data type Description

m_InitialiseFromCache Externally
defined
Boolean data
type

Boolean
integer

Flag indicating whether to use
the data that already exists in
the cache:

v 0: Do not use cached data

v 1: Use cached data if any
exists

m_NumberOfRetries Integer The number of times to try
using the cached data before
giving up (that is, the number
of subsequent times that DISCO
can be restarted before starting
with a clean slate).

If no value is specified, DISCO
always starts with clear
databases.

m_StoreEveryNthDevice Default = 10 Integer How often the findRateDetails
table is to be updated. After the
specified number of devices
have been found the table is
updated.

Appendix A. Discovery databases 271

failover.status table
The failover.status table displays the number of times that the DISCO process has
attempted to restart with cached data. This table is active, so you must not
configure inserts into it.

Table 128. failover.status database table schema

Column name Constraints Data type Description

m_NumberOfAttempts v NOT NULL

v PRIMARY KEY

Integer The number of times that the
DISCO process has attempted
to restart with cached data.

This column is set to 1 when
DISCO is first run in failover
recovery mode and
incremented each time DISCO
is subsequently run in
failover mode.

failover.findRateDetails table
The findRateDetails table gives details of devices that have been found at a certain
point in the discovery. This table is active and inserts must not be made in the
schema file; the table is populated automatically.

Table 129. failover.findRateDetails database table schema

Column name Constraints Data type Description

m_StartTime v NOT NULL

v PRIMARY KEY

Text The time at which the first
device was found.

m_LastFindTime Text The time at which the last
device was found.

m_DevicesFound Integer The number of devices found
so far.

failover.doNotCache table
To prevent caching a given table, you can specify its name in the doNotCache
table. This ensures that unnecessary cache files are not created, such as those for
temporary tables defined within stitchers.

272 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 130. failover.doNotCache database table schema

Column name Constraints Data type Description

m_DatabaseName NOT NULL Text The name of any database that is
not to be cached during failover
recovery.

The following tables must be
cached in order to use the failover
recovery mode, and therefore must
not be listed in this table:

v disco.status

v failover.status

The following tables must be
cached, and therefore must not be
listed in this table:

v The agent despatch and returns
tables.

v finders.processing

v translations.ipToBaseName

m_TableName NOT NULL Text The name of the table within the
database specified in
m_DatabaseName that is not to be
cached.

Use * to indicate all the tables of
the database.

failover.restartPhaseAction table
The restartPhaseAction table contains the set of stitchers that are executed when
restarting in a given discovery phase. Multiple stitchers can be specified, but they
are executed in an arbitrary order. It is recommended that at least the FinalPhase
stitcher is executed when restarting in the topology creation phase.

Table 131. failover.restartPhaseAction database table schema

Column name Constraints Data type Description

m_RestartPhase NOT NULL Integer The phase in which DISCO is
restarted.

m_ExecuteStitcher NOT NULL Text The stitcher that is to be
executed in this phase.

Example failover database configuration
This example uses OQL commands to insert configuration values into the failover
database tables that are appended to the DiscoConfig.cfg file to configure DISCO
when it is launched.

Appendix A. Discovery databases 273

Example configuration of the failover.config table
This example uses OQL commands to insert configuration values into the
failover.config table.

For this configuration of the failover.config table, data already in the cache is used.
The Discovery engine, ncp_disco, can be restarted up to three times before cached
data is ignored. These values are used only when
disco.config.m_WriteTablesToCache=1.
insert into failover.config
(

m_InitialiseFromCache,
m_NumberOfRetries

)
values
(1, 3);

Example configuration of the failover.doNotCache table
This example uses OQL commands to insert configuration values into the
failover.doNotCache table. The disco.config table and all tables of the
instrumentation database are not cached.
insert into failover.doNotCache
(

m_DatabaseName,
m_TableName

)
values
(

’disco’, ’config’
);

insert into failover.doNotCache
(

m_DatabaseName, m_TableName
)
values
(

’instrumentation’, ’*’
);

Agent Template database
The databases of each discovery agent are based on a template called the
agentTemplate database.

The agentTemplate database is defined in $NCHOME/etc/precision/
DiscoSchema.cfg, and its fully qualified database table names are:
agentTemplate.despatch and agentTemplate.returns.
Related reference:
“Discovery agent definition files” on page 50
The discovery agent definition files define the operation of the discovery agents.

274 IBM Tivoli Network Manager IP Edition: Discovery Guide

Discovery agent despatch table
When a device has been interrogated by the Details agent, it is passed to the
Associated Address agent to check whether it has already been discovered. If the
device has not been discovered, the device details are processed and sent by a
stitcher to the despatch table of the appropriate agent.

The despatch table is described in Table 132.

When the device details are placed in the despatch table, the agent attempts to
retrieve connectivity information pertaining to the device.

Table 132. agentTemplate.despatch database table schema

Column name Constraints Data type Description

m_Name PRIMARY KEY

NOT NULL

Text Unique name of an entity on the
network.

m_UniqueAddress NOT NULL Text Unique IP address of the network
entity.

m_ManagerId PRIMARY KEY

NOT NULL

Text Manager of the device. If the device
is accessed directly, this is set to " ".
By default, this is set to " ".

m_Protocol Integer The protocol of the discovered
device:

v (1) IP

v (2) IP-NAT

m_ObjectId Text Textual representation of the device
class (an ASN.1 address).

m_SnmpAccessIP Text If present, overrides the IP address
used for SNMP access to devices
using the Helper Server.

m_AddressSpace Text The name of the NAT address space
to which the device belongs. This
value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the public
domain, this value is NULL.

m_HaveAccess Externally
defined
Boolean data
type

Boolean
Integer

Flag indicating whether there is
SNMP access to the device:

v (1) Have Access

v (0) No Access

Appendix A. Discovery databases 275

Discovery agent returns table
Returned device connectivity details are placed in the returns table of the agent.
These details are used to populate the topology databases.

The returns table is described in Table 133.

Table 133. agentTemplate.returns database table schema

Column name Constraints Data type Description

m_Name NOT NULL Text Unique name of an entity on the
network.

m_UniqueAddress NOT NULL Text Layer 3 address of this entity.

m_Protocol Integer The protocol of the discovered
device:

v (1) IP

v (2) IP-NAT

m_ObjectId Text Textual representation of the device
class (an ASN.1 address).

m_HaveAccess Externally
defined
Boolean data
type

Boolean Integer Flag indicating whether there is
SNMP access to the device:

v (1) Have Access

v (0) No Access

m_ExtraInfo Externally
defined vblist
data type

Object Any extra information specified by
the user in the agent definition file.

m_LocalNbr Externally
defined
neighbor data
type

Object Direct neighbors (interfaces).

m_RemoteNbr Externally
defined
nbrsNeighbor
data type

Object Remote neighbors connected to
interfaces.

m_UpdAgent Text The agent that updated this device.

m_SnmpAccessIP Text If present, overrides the IP address
used for SNMP access to devices
using the Helper Server.

m_AddressSpace Text The name of the NAT address space
to which the device belongs. This
value is set in the
translations.NATAddressSpaceIds
table. If the discovery is not using
NAT, or if the device is in the
public domain, this value is NULL.

m_LastRecord Externally
defined
Boolean data
type

Boolean integer Is this the last record for this entity:

v (1) True

v (0) False

276 IBM Tivoli Network Manager IP Edition: Discovery Guide

Appendix B. Discovery process

The Network Manager discovery process produces a network topology that
includes connectivity and containment data.

Discovery subprocesses
The discovery process consists of several subprocesses that work together to
discover devices and device interconnectivity.

When you launch a discovery, the internal Network Manager discovery engine
(ncp_disco) is run. The ncp_disco engine manages the process of discovering
device existence and interconnectivity.

Whenever you launch a full discovery the Discovery Engine, ncp_disco, rereads its
configuration files. The Discovery Engine also instructs the Helper Server and the
individual helpers to reread their configuration files. This is controlled by the
DiscoReadConfig() rule within the FullDiscovery stitcher file.

Note: When you launch a partial discovery, ncp_disco does not read its
configuration files.

The discovery engine operates by detecting the existence of a device on the
network and querying the device for inventory and connectivity information,
which is subsequently processed or 'stitched' together to generate a connectivity or
topology model. The discovery engine components are described in Table 134.

Table 134. Discovery components

Name Description

Finders Finders discover the existence of devices but do not retrieve connectivity
information.

Agents ncp_disco uses discovery agents to request connectivity information from
devices that the finders have discovered. There are a variety of agents,
each specialized to retrieve information from different devices, and, in
certain cases, to use different protocols. Agents do not have any direct
interaction with the network, but instead retrieve information through
the Helper Server. Agents can be libraries or text files, and are specialized
for particular protocols, devices or classes.

Helper Server The Helper Server manages the helpers and stores the information that is
retrieved from the network. Discovery agents retrieve their information
through the Helper Server to reduce the load on the network. The Helper
Server can service the requests directly with cached data or pass on the
request to the appropriate helper.

Helpers The helpers retrieve information from the network on behalf of the
discovery agents. Helpers also translate agent queries into the
appropriate network protocol and make requests to the devices.

© Copyright IBM Corp. 2006, 2013 277

Table 134. Discovery components (continued)

Name Description

Stitchers Stitchers are processes that transfer, manipulate and distribute data
between databases. The discovery stitchers are also responsible for
processing the information collected by the agents and using this
information to create the network topology. A predefined set of stitchers
is included with Network Manager. You can modify existing stitchers or
write new stitchers to perform custom manipulation of your network
topology. For example, you can write a stitcher to make your device
interfaces appear with a custom naming convention. Stitchers are coded
using the stitcher language.

Discovery timing
Each full discovery consists of one or more discovery cycles. The division of a full
discovery into multiple discovery cycles enables the discovery to complete in a
timely way.

In the first discovery cycle, Network Manager discovers the existence of a
predetermined majority of devices on the network, and proceeds to complete all
data collection and processing operations associated with these devices. When
Network Manager has discovered the existence of a predetermined majority of
devices on the network, Network Manager enters the blackout state.

Any devices that Network Manager discovers during the blackout state are placed
into a database table named finders.pending. These devices are only processed in
the following discovery cycle. This means that the discovery process does not have
to wait for all devices to be discovered before proceeding to the more detailed data
collection and data processing operations.

Note: Ideally a discovery should complete in a single discovery cycle; however,
sometimes it is not possible to discover the existence of entities sufficiently quickly
as a result more discovery cycles are needed. Reasons why the system does not
discover the existence of entities sufficiently quickly include: ping sweeping of
sparsely populated subnets, and lack of access to devices. First-time discoveries
often have multiple cycles. This can be mitigated by using the BuildSeedList.pl
script to build a seed list after the initial discoveries. This seed list will then be
used in subsequent discoveries to find devices in a more timely manner.

By default, each discovery cycle is made up of a data collection stage and a data
processing stage. The data collection stage is in turn broken up into three phases.
Figure 1 on page 279 shows a timing diagram for a discovery that requires two
discovery cycles to complete.

The data collection and data processing stages are briefly described in Table 135 on
page 279.

278 IBM Tivoli Network Manager IP Edition: Discovery Guide

In Figure 1, the blackout state for the first discovery cycle begins and ends at the
instants indicated by the numbers 1 and 2 respectively:

�1�: Blackout state begins. A predetermined majority of devices on the network
have now been discovered. Any devices discovered after this point are placed
into the finders.pending table for processing in the subsequent discovery cycle.
�2�: Blackout state ends. Devices stored in the finders.pending table are now
processed in the subsequent discovery cycle.

Note: If the network being discovered is particularly large or complex, more than
two discovery cycles may be required to complete a full discovery. In this case,
each discovery cycle, except for the last cycle, has its own blackout state.

Table 135. Data collection and data processing stages

Stage or Phase Description

Data collection stage During this stage, Network Manager interrogates the
network for device information, using the finder, agent and
helper components of DISCO. The data collection stage is
divided into three phases, which are described in this table.

Data collection: first phase During this phase, finders identify devices on the network.
Phase one completes when the device find rate drops below
a certain level. For each device discovered, agents retrieve
device details, IP addresses associated with the device, and
device connectivity information.

Data collection: second phase During this phase, an agent retrieves IP address to MAC
address mapping data.

Data collection: third phase During this phase agents download all forward database
table information for the network switches and ping all
devices to confirm the accuracy of the contents of the
forward database tables.

1

Blackout state

Discovery cycle 1

Data collection

Discovery cycle 2

Data processing

Data processing

Data collection

Phase

Phase

Phase

Phase

Phase

pending

Finders
database

Database
tables

Figure 1. Discovery timing for a full discovery with two discovery cycles

Appendix B. Discovery process 279

Table 135. Data collection and data processing stages (continued)

Stage or Phase Description

Data processing stage During this stage, Network Manager deduces the network
topology based on data collected during the data collection
stage. Stitchers analyze the data collected and build a
network topology that includes connectivity and
containment data.

Related concepts:
“Discovery stages and phases”
The discovery process can be divided into two stages: data collection and data
processing. The stages are subdivided into phases.
“Discovery cycles” on page 285
A discovery cycle has occurred when the discovery data flow for a particular cycle
has gone from start to finish. A full discovery might require more than one cycle.
“Data collection stage” on page 281
The data collection stage involves interrogating the network for device information
to produce a network topology. DISCO uses the finders, agents and helpers during
the data collection stage. The data collection stage can be further subdivided into a
number of phases.
“Data processing stage” on page 281
Topology deduction takes place during the data processing stage, as the
information from the data collection stage is analyzed, interpreted and processed
by the stitchers. The culmination of the data processing stage is the production of
the containment model.

Discovery stages and phases
The discovery process can be divided into two stages: data collection and data
processing. The stages are subdivided into phases.
Related concepts:
“Discovery timing” on page 278
Each full discovery consists of one or more discovery cycles. The division of a full
discovery into multiple discovery cycles enables the discovery to complete in a
timely way.
“Discovery cycles” on page 285
A discovery cycle has occurred when the discovery data flow for a particular cycle
has gone from start to finish. A full discovery might require more than one cycle.
Related tasks:
“Monitoring discovery progress” on page 131
You can use the Monitoring pane to monitor the progress of the current discovery
through each of the discovery phases.

280 IBM Tivoli Network Manager IP Edition: Discovery Guide

Data processing stage
Topology deduction takes place during the data processing stage, as the
information from the data collection stage is analyzed, interpreted and processed
by the stitchers. The culmination of the data processing stage is the production of
the containment model.

The data processing stage corresponds to creating the topology. This is the final
conceptual step in the discovery cycle.

The data processing and data collection stages usually overlap, because you can
configure the stitchers to begin processing connectivity information from different
discovery agents before the main stitching operation begins.
Related concepts:
“Discovery timing” on page 278
Each full discovery consists of one or more discovery cycles. The division of a full
discovery into multiple discovery cycles enables the discovery to complete in a
timely way.
“Creating the topology” on page 292
The creation of the topology is carried out in several steps.

Data collection stage
The data collection stage involves interrogating the network for device information
to produce a network topology. DISCO uses the finders, agents and helpers during
the data collection stage. The data collection stage can be further subdivided into a
number of phases.

First phase

In the first phase of data collection, the finders identify all the devices that exist on
the network. Generally, a phase can be completed when all the launched processes
have completed their operation. However, although you might want to wait until
all devices have been discovered by the finders before proceeding to phase two, it
is inefficient to hold back the discovery process by waiting indefinitely. The first
phase therefore completes when the find rate drops below a certain level,
determined by no devices being discovered for the amount of time specified in
disco.config.m_NothingFndPeriod.

The following conceptual steps in the discovery cycle take place during data
collection phase one:
v Discovering device existence
v Discovering device details (standard)
v Discovering associated device addresses
v Discovering device connectivity

Agents in the first phase

Some agents return data that can be used to find other devices, for example, the IP
address of remote neighbors, or the subnet within which a local neighbor exists.
This mechanism is known as feedback.

The Feedback stitcher manages feedback by sending the information returned by
the agents to the Ping finder for inclusion in the discovery. However, the blackout

Appendix B. Discovery process 281

state ensures that any agent involved in the feedback process must be run in phase
one for devices to be discovered in the current discovery cycle.

Phase one also usually involves the Switch discovery agents downloading all
VLAN and interface information.

Blackout state

After phase one, the discovery enters the blackout state. The finders have discovered
the existence of a pre-determined majority of devices on the network. Any new
device addresses discovered in the blackout state, either by the finders or
recursively by a discovery agent, are put into the finders.pending database table.

Devices in the finders.pending database table are processed in the next discovery.
If there are devices in the finders.pending database table, the next discovery starts
as soon as the current discovery finishes.

Second phase

After the criteria for the completion of phase one have been fulfilled, phase two
begins. To map layers two and three of the OSI model, the ARP Cache discovery
agent populates the Helper Server with ARP data, which is a list of device IP
address-to-MAC address resolution.

Before the discovery can transfer from phase two to phase three, the processes
from phase two must have completed their operation. An agent is considered to
have finished after all entities in its despatch table are also in its returns table.

The agents are multithread, and records of discovered devices passed to the agents
are tagged with a certain phase. Consequently, at any time an agent can be
processing devices in two separate phases. If any action that should have occurred
in phase two is detected after phase three has begun, phase three continues while
the agent runs through phase two processing.

Third phase

By phase three, the discovery process has full knowledge of the devices that exist
within the network (acquired from phase one) and access to full IP
address-to-MAC address mappings for all devices in the Helper Server (acquired
from phase two). The Switch agents can now proceed to download all the forward
database table information of the network switches whilst pinging all devices to
confirm the accuracy of the contents of the forward database tables.

When phase three has finished, which is signified by the completion of all
processes scheduled to run in the phase, the discovery is ready to proceed from the
data collection stage to the data processing stage, where all the connectivity
information is knitted together to form a network topology.

Impact of the stages and phases approach on DISCO processes

The division of the data collection stage into phases affects all the processes
involved in the discovery and network topology deduction, because the phases are
processed in order. Any given phase cannot begin until the criteria for completion
of the previous phase have been met.

282 IBM Tivoli Network Manager IP Edition: Discovery Guide

All the processes of DISCO must therefore have an associated phase (or phases) in
which they are allowed to operate. Thus, whilst the finders are typically configured
to run through all phases, you might want to configure certain discovery agents to
operate only within a specific phase(s). The flexibility of DISCO allows you to have
processes that are intelligent enough to behave differently when they operate
within different phases, and can pass control to other processes or stop operation
until the start of their next operational phase.
Related concepts:
“Discovery timing” on page 278
Each full discovery consists of one or more discovery cycles. The division of a full
discovery into multiple discovery cycles enables the discovery to complete in a
timely way.
“Discovering device existence” on page 286
The discovery of device existence is carried out in several steps.
“Discovering device details (standard)” on page 287
The standard discovery of device details is carried out in several steps.
“Discovering associated device addresses” on page 289
There are several steps in the process flow during the discovery of associated
device addresses.
“Discovering device connectivity” on page 291
The discovery of device connectivity is carried out in several steps.

Advantages of staged discovery
There are several reasons why it is advantageous to apply a staged and phased
approach to discovery.

Switch connectivity

In determining the connectivity of some devices, it is sometimes necessary for the
discovery agent to know all the devices that exist before requesting particular
Management Information Base (MIB) variable(s), especially if the requested
information is transient.

An example is when the layer 2 agents discover connectivity between Ethernet
switches. Ethernet switches have forward database tables that expire over time. So,
to ensure that a switch has a fully populated forward database table at the time of
interrogation, you could ping all devices associated with the switch.

You would therefore configure the switch discovery agents to perform some other
processing in data collection phase one. After the agents receive the signal that
phase one has been completed (that is, all devices have been found) they can start
phase two operations. For example, they could ping all devices within the
discovery domain while downloading the forward database tables for all switches.

Mapping subnet boundaries

One limitation of configuring individual discovery agents to make individual ARP
requests directly from the Helper Server is that the ARP helper cannot run
simultaneously on multiple subnets unless it is specifically configured to do so. To
resolve this problem, use a special ARP Cache discovery agent that imitates a
generic discovery agent (in the sense that entities can be sent to it) but that also
can map boundaries or different layers of the OSI model.

Appendix B. Discovery process 283

The ARP Cache discovery agent can inquire about ARP caches that exist on
routers. It uses this information to populate the ARP helper database within the
Helper Server and build up full device IP address to MAC address mapping
without having to rely on the ARP helper.

This approach can be applied when using switch discovery agents that need to
perform IP address-to-MAC address resolution before they can start operation.
Following the example above, you could configure your discovery data collection
stage to have three phases:
v Phase one: Find all devices that exist on the network.
v Phase two: Use the ARP Cache discovery agent to populate the Helper Server

with full IP address to MAC address mappings.
v Phase three: Ping all devices and invoke the switch discovery agents by

downloading the forward database tables for all switches in the network, using
the IP address to MAC address mappings determined in phase two.

Multiphase discovery agents

Another possible consequence of dividing the data collection stage into phases is
that you can configure the discovery agents to perform different operations within
different phases.

Although a discovery agent is programmed to start operating in phase two, it
could also conduct some other operation in phase one. This is because the end of
phase one signifies only that all devices have been discovered. The agent could be
configured to perform other actions such as downloading interfaces, issuing Telnet
requests, or downloading other MIB variables during phase one. Only after phase
two has started does the agent begin to process instructions specific to phase two.

Tip: It is good practice to configure the discovery to occur over multiple phases, to
ensure maximum accuracy of the deduced topology.

Effect of discovery multiphasing on network traffic
One of the main benefits of multiphasing is reduced network traffic.

Because similar types of network requests are grouped in phases, data can be
cached in the Helper Server to reduce the network load. The Helper Server is the
intermediary between the discovery agents and the network, and can amalgamate
multiple pings of the same device into one block so that they are resolved into a
single ping.

The Helper Server also has a request pool that ensures that the Helper Server does
not overload the network. The request pool does this by restricting the number of
simultaneously-handled requests.

Criteria for multiphasing
The main criterion for configuring a discovery that has multiple phases is to assess
the requirements of the different operations that need to be performed during the
discovery process. For example, Ethernet-based discovery agents require at least
two phases. It is possible to have discovery agents that can operate in any phase.

284 IBM Tivoli Network Manager IP Edition: Discovery Guide

Managing the phases
The different phases of the discovery data collection stage are managed by an
internal phase manager.

The phase manager:
v Reads the maximum overall phase number and calculates the total number of

phases when all the discovery agent and stitcher definition files are loaded.
v Calculates the phase and process dependencies, that is, which discovery agents

are scheduled to run in which phases.
v Monitors the processes running during the phases.

When the phase manager detects that all the processes for the current phase have
completed, it sends a signal indicating phase completion for all the processes that
are waiting to be launched in the next phase.

Discovery cycles
A discovery cycle has occurred when the discovery data flow for a particular cycle
has gone from start to finish. A full discovery might require more than one cycle.

The discovery data flow can be categorized into the following conceptual steps:
v Discovering device existence
v Discovering device details (standard)
v Discovering device details (context-sensitive)
v Discovering associated device addresses
v Discovering device connectivity
v Creating the topology

These steps follow the discovery data flow in order from start to finish, with the
exception of discovering device details (context-sensitive), which replaces
discovering device details (standard) if the discovery is context-sensitive.
Related concepts:
“Discovery timing” on page 278
Each full discovery consists of one or more discovery cycles. The division of a full
discovery into multiple discovery cycles enables the discovery to complete in a
timely way.
“Discovery stages and phases” on page 280
The discovery process can be divided into two stages: data collection and data
processing. The stages are subdivided into phases.
“Discovery process with EMS integration” on page 295
Network Manager collects topology data from an EMS using collectors.

Appendix B. Discovery process 285

Discovering device existence
The discovery of device existence is carried out in several steps.

Figure 2 shows how the initial existence of devices on the network is discovered.

The process flow shown in Figure 2 is described below.
�1�: The finders receive their instructions from their configuration files and the
inserts made into the finders.despatch table, then proceed to the network to
look for devices.
�2�: The finders return the device existence information to the finders.returns
table.
�3�: After the device existence information is placed into the finders.returns
table, a stitcher moves the information to the finders.processing table. This
signifies that the network entity is being processed by DISCO. If the discovery
is in the blackout state, the information is placed into the finders.pending table
instead.
�4�: A stitcher moves the information about device existence from the
finders.processing table to the Details.despatch table, ready for processing by
the Details agent.

1

2

33

4

despatch

F

F
F

F: finders

Details agent

Network

returns

Finders database

Database tables

despatch

returns

pending

processing

Figure 2. Discovery process flow: device existence

286 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related concepts:
“Data collection stage” on page 281
The data collection stage involves interrogating the network for device information
to produce a network topology. DISCO uses the finders, agents and helpers during
the data collection stage. The data collection stage can be further subdivided into a
number of phases.

Discovering device details (standard)
The standard discovery of device details is carried out in several steps.

Figure 3 shows how device details are discovered in a standard discovery.

The process flow shown in Figure 3 is described below.
�1�: All the agent despatch tables are active, so an insertion into the
Details.despatch table automatically triggers the Details agent to discover basic
device information and determine whether SNMP access to the device is
available.
�2�: The Details agent interrogates the network through the Helper Server.
Requests are cached to reduce the number of times that the helpers
(represented by the letter H in Figure 3) must interrogate the network directly.
�3�: The information retrieved from the network is returned to the
Details.returns table.

1

2

33

4

H H

Helper server

Network

Details agent

H: helper

AssocAddress agent

Figure 3. Discovery Process Flow: Device Details (Standard)

Appendix B. Discovery process 287

�4�: The information in the Details.returns table is passed to the despatch table
of the Associated Address (AssocAddress) agent for processing.

Related concepts:
“Data collection stage” on page 281
The data collection stage involves interrogating the network for device information
to produce a network topology. DISCO uses the finders, agents and helpers during
the data collection stage. The data collection stage can be further subdivided into a
number of phases.

Discovering device details (context-sensitive)
The discovery of context-sensitive device details is carried out in several steps.

Figure 4 shows how device details are discovered in a context-sensitive discovery.

The process flow shown in Figure 4 is described below.
�1�: All the agent despatch tables are active, so an insertion into the
Details.despatch table automatically triggers the Details agent to discover basic
device information and determine whether or not SNMP access to the device is
available.

5

1

2

33

4

H H

Helper server

Network

Details agent

H: helper

AssocAddress agentContext agent

Figure 4. Discovery process flow: device details (context-sensitive)

288 IBM Tivoli Network Manager IP Edition: Discovery Guide

�2�: The Details agent interrogates the network through the Helper Server.
Requests are cached to reduce the number of times that the helpers must
interrogate the network directly.
�3�: The information retrieved from the network is returned to the
Details.returns table.
�4�: The information in the Details.returns table is passed to the despatch table
of the appropriate Context agent, which adds context tags.
�5�: After the Context agent has finished its processing, the information is
passed to the despatch table of the Associated Address (AssocAddress) agent
for processing.

Related concepts:
“Context-sensitive discovery” on page 8
If you need to discover devices such as SMS devices, MPLS Edge devices, or other
devices with virtual routers, you must run a context-sensitive discovery.
Context-sensitive discovery ensures correct representation of virtual routers.
Always check that your particular device type is supported for discovery.
Related tasks:
“Configuring a context-sensitive discovery” on page 102
If you have devices that you need to discover such as SMS devices, MPLS Edge
devices, or other devices with virtual routers, you must run a context-sensitive
discovery. Context-sensitive discovery ensures correct representation of virtual
routers. Always check that your particular device type is supported for discovery.
Related reference:
“DiscoConfig.cfg configuration file” on page 63
The DiscoConfig.cfg configuration file is used to have the Ping finder automatically
check the devices discovered by the File finder, and to enable a context-sensitive
discovery.

Discovering associated device addresses
There are several steps in the process flow during the discovery of associated
device addresses.

The following figure shows how associated device addresses are discovered.

Appendix B. Discovery process 289

The following process flow describes Figure 5:
�1�: The Associated Address agent uses the Helper Server to download all the
IP addresses associated with the interfaces of the device that is under
investigation.
�2�: The Associated Address agent checks the IP addresses against the registry
of addresses, the translations.ipToBaseName table. The details are also added to
this registry. If the device has already been discovered by another of its
addresses (that is, if the translations.ipToBaseName table already contains a
record for this device), the details of the device are not sent to the discovery
agents.
�3�: Provided the device has not already been discovered, the stitchers pass the
details to the appropriate discovery agents, as specified in the DiscoAgents.cfg
configuration file.

1

2

33

Network

Helper Helper

Helper server

ipToBaseName

Translations
database

Agent

Agent

AssocA

Figure 5. Discovery process flow: associated device addresses

290 IBM Tivoli Network Manager IP Edition: Discovery Guide

Related concepts:
“Data collection stage” on page 281
The data collection stage involves interrogating the network for device information
to produce a network topology. DISCO uses the finders, agents and helpers during
the data collection stage. The data collection stage can be further subdivided into a
number of phases.

Discovering device connectivity
The discovery of device connectivity is carried out in several steps.

The following figure shows how device connectivity is discovered, as well as how
devices are discovered recursively.

The following process flow describes Figure 6:
�1�: When information is inserted into the despatch table of a discovery agent,
the agent attempts to discover the connectivity information for that device. The
agent sets up a TCP socket-based communication link with the Helper Server
and requests the appropriate connectivity information.
�2�: A stitcher passes the addresses of the remote neighbors of the device, and
the subnet address or addresses of the device, to a finder for discovery. Because
these addresses might not exist, and also might not be in the specified
discovery scope, the addresses must run through the discovery process from
the beginning.

1 1

2 2

AgentAgent Helper server

Network

HelperHelper

Finders
database

Figure 6. Discovery process flow: device connectivity

Appendix B. Discovery process 291

Related concepts:
“Data collection stage” on page 281
The data collection stage involves interrogating the network for device information
to produce a network topology. DISCO uses the finders, agents and helpers during
the data collection stage. The data collection stage can be further subdivided into a
number of phases.

Creating the topology
The creation of the topology is carried out in several steps.

The following figure shows a simplified data flow for the creation of the topology
from the raw data returned by the discovery agents

The following process flow describes the data flow.
�1�: After all the discovery agents have finished, and the discovery enters the
data processing stage, special data processing stitchers interact with the
discovery agent databases to produce the workingEntities.finalEntity table.
�2�: The stitchers use a subset of the agents-returns tables, together with the
workingEntities.finalEntity table, to deduce and create the containment model.
This model is stored in the workingEntities.containment table.

1

2

33

4

4

33

2

5

returns table for agents

workingEntities,
finalEntity

returns table for agents

workingEntities,
containment

Layer databases

fullTopology,
entityByNeigh-

bor

scratchTopology,
entityByName ncp_model

Figure 7. Discovery process flow: creating the topology

292 IBM Tivoli Network Manager IP Edition: Discovery Guide

�3�: The stitchers use a further subset of the agents-returns tables, together with
the workingEntities.finalEntity table and the workingEntities.containment table,
to build the various topology layers, which are stored in the layer database
tables. The full set of layers is merged in the fullTopology.entityByNeighbor
table.
�4�: The stitchers merge the three tables produced (workingEntities.finalEntity;
workingEntities.containment; fullTopology.entityByNeighbor) to build the
network model.
�5�: The Topology manager, ncp_model, instantiates each network element
(subject to the instantiation filter) and sends the topology to other components
as required.

Related concepts:
“Data processing stage” on page 281
Topology deduction takes place during the data processing stage, as the
information from the data collection stage is analyzed, interpreted and processed
by the stitchers. The culmination of the data processing stage is the production of
the containment model.

Broadcast of discovery data
On completion of a discovery the Topology manager, ncp_model, uses the message
bus to receive topology updates from the discovery and to pass on those updates
to the message bus where other processes like the Event Gateway can retrieve
these updates. In addition, ncp_model also uses these updates to update the NCIM
topology database.

Data is stored in two formats:
v NCIM cache format
v Legacy master.entityByName format

The purpose of each storage format is as follows:

NCIM cache format
Data in this format is used by ncp_model to place updates on the message
bus for other processes such as the Event Gateway, ncp_g_event

Legacy master.entityByName format
Data in this format is used by ncp_model to update the NCIM topology
database

The NCIM cache format is described in the IBM Tivoli Network Manager IP Edition
Topology Database Reference.

Advanced discovery configuration options
Use this information to understand how to configure the discovery process data
flow and to configure download of full routing tables.

Appendix B. Discovery process 293

Configurable discovery data flow
The discovery process data flow is user-configurable. Stitchers control the
movement of data between databases, and you can customize the discovery
process by changing the way in which the stitchers are triggered and operate.

Stitcher and agent triggers

You can modify the data flow by changing the criteria that trigger the deployment
of the stitchers and discovery agents, by modifying the stitchers, and, if necessary,
by modifying the agent definitions. Some typical triggers are:
v Data being inserted into a specific database table
v A stitcher or discovery agent completing its operation
v The end of a discovery phase

Any changes you make are automatically detected by DISCO during its periodic
scan of the agent and stitcher files (the scan frequency is determined by the entry
in the disco.config database). On detecting changes, DISCO modifies its agent and
stitcher definitions databases accordingly, and applies the changes to the next
discovery cycle.

For more details about the stitchers and the stitcher language, see the IBM Tivoli
Network Manager IP Edition Language Reference Guide.

On-demand stitchers

Stitchers can be started on demand. If you insert a stitcher into the stitchers.actions
database, DISCO automatically runs the stitcher. This means that the discovery
cycle can be started at any point, and further actions can be configured to start
when the stitcher completes.
Related reference:
“stitchers.actions table” on page 220
If a stitcher is inserted into the stitchers.actions table, DISCO runs the stitcher.
Once the stitcher has completed, its entry is deleted from the stitchers.actions table.
Any stitchers triggered to execute from the stitcher that has been inserted, or upon
completion of the stitcher, are also executed.

Partial matching
By default, the discovery process uses partial matching, which means that the
discovery agents do not need to download the full routing tables during discovery.

You do not need to modify the discovery agent definition files to use partial
matching. However, it is possible to prevent the IpForwardingTable and
IpRoutingTable discovery agents from using partial matching in certain cases if
you have devices on your network that do not support partial matching.

To prevent partial matching on certain devices, you must specify the devices that
do not support partial matching in the DiscoRouterPartialMatchRestrictions();
section of the IpForwardingTable.agnt definition file (for modern devices that use
RFC2096) or the IpRoutingTable.agnt definition file (for older devices that use
RFC1213). If a discovered device matches the filter specified in the
DiscoRouterPartialMatchRestrictions(); section, partial matching is not
attempted on that device.

294 IBM Tivoli Network Manager IP Edition: Discovery Guide

Discovery process with EMS integration
Network Manager collects topology data from an EMS using collectors.

The following steps show how Network Manager collects topology data from an
EMS using collectors.

Collector-based discovery can be divided into the following conceptual steps:
v Discovering device existence
v Discovering basic device information
v Discovering detailed device information

For an overview of how Network Manager collects topology data from Element
Management Systems (EMSs) and integrates this data into the discovered topology,
see the IBM Tivoli Network Manager IP Edition Product Overview.
Related concepts:
“Discovery cycles” on page 285
A discovery cycle has occurred when the discovery data flow for a particular cycle
has gone from start to finish. A full discovery might require more than one cycle.
Related tasks:
“Configuring EMS discoveries” on page 88
You can configure Network Manager to collect topology data from Element
Management Systems (EMS) and integrate this data into the discovered topology.

Discovering device existence with collectors
During a collector discovery, the discovery of device existence takes place in
several steps.

Figure 8 on page 296 shows how the initial existence of devices held on the
collectors is discovered.

Appendix B. Discovery process 295

The following process flow describes Figure 8:
�1�: The collector finders receive instructions from its configuration files and
then proceeds to the network to look for collectors.
�2�: The collector finders return the list of devices to the finders.returns table.
�3�: Immediately after the device existence information is placed into the
finders.returns table, the FnderRetProcessing stitcher moves the information to
the finders.processing table, to denote that the network entity is being
processed. If the discovery is in the blackout state, the information is placed
into the finders.pending table.
�4�: The FnderProcToDetailsDesp stitcher moves the information about device
existence from the finders.processing table to the CollectorDetails.despatch table
so that the CollectorDetails agent can process the information.

1 2

33

4

despatch returns

Finders database

Database tables

despatch

returns

pending

processing

F

F
F

F: Collector finders

CollectorDetails agent

Network

Figure 8. Collector discovery process flow: discovery of device existence

296 IBM Tivoli Network Manager IP Edition: Discovery Guide

Discovering basic device information
During a collector discovery, the discovery of basic device information takes place
in several steps.

The following figure shows how basic device details are discovered in a collector
discovery.

The following process flow describes Figure 9:
�1�: All the agent despatch tables are active, so an insertion into the
CollectorDetails.despatch table automatically triggers the CollectorDetails agent
to discover basic device information from the collector.
�2�: The CollectorDetails agent uses the Helper Server to interrogate the helper
collector .
�3�: The information retrieved from the network is returned to the
CollectorDetails.returns table.

1 33

2

H H

Helper server

Network

CollectorDetails agent

H: Collector

Figure 9. Collector discovery process flow: Discovery of basic device information

Appendix B. Discovery process 297

Discovering detailed device information
During a collector discovery, the discovery of detailed device information takes
place in several steps.

The following figure shows how detailed device information is discovered in a
collector discovery.

The following process flow describes Figure 10:
�1�: The CollectorDetailsRetProcessing stitcher passes the information in the
CollectorDetails.returns table to the despatch table of the following collector
agents for processing: the CollectorInventory agent, the CollectorLayer2 agent,
the CollectorLayer3 agent, and the CollectorVpn agent
�2�: Inserting information into the despatch table of an agent triggers an
attempt by that agent to discover information about that device. The collector
agents interrogate the collectors to discover the following information about
each device. The CollectorInventory agent discovers local interface, Entity
MIB-style information, and IP addresses associated with the device. The
CollectorLayer2 agent gathers information for each resolved layer 2 connection
of each processed device. The CollectorLayer3 agent gathers information for
each resolved layer 3 connection of each processed device. The CollectorVpn
agent gathers VPN information for each processed device.

1

2

1

HelperHelper

Helper server

Network

CollectorInventory agent

CollectorVpn agent

CollectorLayer3 agent

CollectorDetails agent
Collecto

Figure 10. Collector discovery process flow: detailed device information

298 IBM Tivoli Network Manager IP Edition: Discovery Guide

Rediscovery
When a discovery has completed, ncp_disco enters rediscovery mode, in which the
discovery of new devices results in updates to the topology model.

Full and partial rediscovery
By modifying the stitchers, you can configure the way DISCO treats devices that
are found in the rediscovery mode.

By default, when the system is in rediscovery mode and either a new device is
found or an existing device changes, the device is rediscovered. The stitchers
ensure that the device is rediscovered only once. The stitchers also check that the
change has not caused the relationship of the device with its neighbors to change.
If necessary, the neighbors of the device are rediscovered. If the number of devices
that need to be rediscovered as a result of relationship changes exceeds a certain
limit, the rediscovery process initiates a full rediscovery.
Related concepts:
“About types of discovery” on page 1
Different terms are used to describe network discovery, depending on what is
being discovered and how the discovery has been configured. You can run
discoveries, rediscoveries, full and partial discoveries, and you can set up
automatic discovery.

Process flow of the FnderRetProcessing stitcher
To configure the way in which DISCO handles newly discovered devices, edit the
FnderRetProcessing.stch stitcher. This stitcher processes the entries that are placed
into the finders.returns table.

The default process flow of the FnderRetProcessing.stch stitcher is:
1. When an entry is placed in the finders.returns table, the stitcher checks whether

the device is in the scope of the discovery. If the device is not in scope, it is
ignored.

2. If the device is in scope and disco.status.m_DiscoveryMode=0, that is, DISCO is
in discovery mode, the stitcher moves the device details to either the
finders.pending table to be processed later (if the discovery is in the blackout
state) or the finders.processing table to be processed now.

3. If the device is in scope and disco.status.m_DiscoveryMode=1, that is, DISCO is
in rediscovery mode, the stitcher determines whether the device needs to be
rediscovered. By default, the stitcher rediscovers:
v Devices for which finders.returns.m_Creator='Rediscovery'. There is no

Rediscovery finder, but this column is set to 'Rediscovery' by other stitchers,
such as ProcRemoteConns.stch, to indicate that as a result of rediscovering
other devices this device needs to be rediscovered.

v Any newly found device that is in scope and has not already been
discovered.

4. If necessary, you can alter the section of the FnderRetProcessing.stch stitcher
that performs the above checks in order to configure when rediscovery of a
device takes place, although this configuration adjustment must be undertaken
by advanced users only.

5. If a device that has already been discovered is to be rediscovered, the stitcher
refreshes the information held in the Helper Server that relates to that device.

Appendix B. Discovery process 299

6. For all devices to be rediscovered, the stitcher removes the old entries for that
device from the finders.processing, Details.returns and Details.despatch tables,
copying the old information to the rediscoveryStore.dataLibrary table for
comparison purposes.

7. The stitcher then places the details of the device to be rediscovered into the
finders.processing table and the FnderProcToDetailsDesp.stch stitcher moves
the device details to the Details agent.

Processing information from discovery agents during
rediscovery
After the entity that is being rediscovered has been processed by the Details agent,
and the details are placed in the Details.returns table, the DetailsRetProcessing.stch
stitcher compares the old data in the rediscoveryStore.dataLibrary table with the
new data. By default, the rediscovery continues from this point.

If necessary, you can edit the DetailsRetProcessing.stch stitcher so that rediscovery
continues only when certain conditions are in place. For example, rediscovery
continues only when SNMP access is available.

The rediscovery data is processed by the AssocAddress agent and then by the
appropriate agents (according to the configured discovery process flow) and sent
to their returns tables.

A full discovery combines the information from the discovery agent returns tables
to produce the topology. However, in a rediscovery, the information must be
checked to determine whether the relationships between devices have changed as a
result of the new information.

For example, if the device being rediscovered, device A, was connected to device B
before the rediscovery, but is now connected to a third device, device C, then both
B and C must also be rediscovered because their relationship has changed. The
AgentRetProcessing.stch stitcher determines the relationships between devices and
the comparison is done by ProcRemoteConns.stch. Switches and hubs need to be
rediscovered differently to routers because the connectivity information they
provide is indirect instead of direct. Any entity that also needs to be rediscovered
as a consequence of rediscovery is inserted back into the finders.returns table with
the parameter m_Creator='Rediscovery'.

Full rediscoveries
Comparing the current relationship between devices to their previous relationship,
and rediscovering all the devices whose relationships have changed, can sometimes
become circular. However, the discovery process includes a check to prevent this
repetition.

If the ratio of entities that have been compared to the entities that need to be
rediscovered exceeds the percentage specified in the
disco.config.m_PendingPerCent column, then DISCO stops rediscovering
individual devices and initiates a full network discovery.

Additionally, the fact that all rediscovered entities are recorded in the
rediscoveryStore.rediscoveredEntities table means that a given entity can be
rediscovered only once.

300 IBM Tivoli Network Manager IP Edition: Discovery Guide

Rediscovery completion
When all the entities that need to be rediscovered have been processed, the
topology layers are rebuilt by the FinalPhase.stch stitcher. This stitcher also clears
the rediscoveryStore database so that it is ready for the next rediscovery.

It is important to note that DISCO might go through many discovery cycles during
rediscovery before the topology is rebuilt. DISCO rebuilds the topology only when
there are no entities needing to be rediscovered.

Option to rebuild topology layers
You can specify whether to rebuild the topology layers following a partial
rediscovery. Using this option, you can increase the speed of partial rediscovery.

Suggested reasons to rebuild or not to rebuild the topology layers are:
v If you specify that the topology layers should not be rebuilt following partial

rediscovery, the result is that new devices are added to the topology much faster
than they would be if the topology layers are rebuilt; however, the resulting
topology may not be complete. Connectivity associated with the newly
discovered device is not fully reflected in the topology. Topology layers are fully
rebuilt when a full rediscovery is run.

v If you specify that topology layers should be rebuilt following partial rediscovery,
the result is an accurate topology showing all connectivity. However the process
of adding new devices takes longer.

Use the m_RebuildLayers field in the disco.config table to specify whether or not
to rebuild topology layers following partial rediscovery. You set this value as
follows:
v If disco.config.m_RebuildLayers=0, then following partial rediscovery, topology

layers stitchers are not run. The result is a much quicker partial discovery:
however, connectivity associated with the newly discovered device is not fully
reflected in the topology.

v If disco.config.m_RebuildLayers=1, then following partial rediscovery, topology
layers stitchers are run. Partial rediscovery takes longer but results in a complete
topology.

Appendix B. Discovery process 301

302 IBM Tivoli Network Manager IP Edition: Discovery Guide

Appendix C. Discovery agents

Use this information to support the selection of discovery agents to run as part of
your discovery.

The following topics provide information on the discovery agents available. There
is also guidance on the agents to select, based on the characteristics of your
network.

Agents
Discovery agents retrieve information about devices in the network. They also
report on new devices by finding new connections when investigating device
connectivity. Discovery agents are used for specialized tasks. For example, the ARP
Cache discovery agent populates the Helper Server database with IP
address-to-MAC address mappings.

In addition to the main discovery agents, which can be enabled or disabled
according to your discovery requirements, there are two agents that must always
be run: the Details agent and the Associated Address agent.

Each discovery agent has its own database resident within DISCO. These databases
are generically structured and based on a template called the agentTemplate
database.

Each discovery agent database contains the following tables:
v agentName.despatch

v agentName.returns

Note: The default configuration sets the majority of agents to run. This is because
the more agents that are run, the wider the range of networks that can be
discovered. Furthermore, agents are designed to quickly stop analyzing devices
that do not provide the data they require. This means that running a large number
of agents increases network traffic by a very small amount only.

Note: Network Manager kills all discovery agents at the end of data collection
stage 3. This ensures that the next discovery restarts the agents and forces the
agents to reread their configuration files at the beginning of a discovery, thereby
detecting any changes to the configuration files.
Related reference:
“Subprocess databases” on page 220
The finders, Details, and agent databases are used during the discovery by the
discovery engine subprocesses to store information retrieved from the network.
The databases are defined within the configuration file, DiscoSchema.cfg.
“DiscoAgentReturns.filter configuration file” on page 55
The DiscoAgentReturns.filter configuration file allows you to apply a topology
data filter to data returned by all discovery agents.

© Copyright IBM Corp. 2006, 2013 303

Details agent
This agent is triggered by the entries in the finders.processing table. At least one
finder is needed to activate this agent. The SNMP helper configuration for
associated devices is also a prerequisite for running this agent.

The Details agent retrieves basic information about devices discovered by the
finders, and determines whether SNMP access to the device is available. This
mandatory agent is triggered by the entries in the finders.processing table, so at
least one finder is needed to activate this agent.

The Details agent is triggered when device information (usually transferred from
the finders by a stitcher) is placed in the Details.despatch database table.

The Details agent retrieves basic information from the network and deposits this
information in the Details.returns table. The basic information retrieved
comprises the DNS name of the device obtained by the configured DNS helper,
and the system object ID obtained by the SNMP helper. IpForwarding data is
downloaded and inserted into the ExtraInfo field which is used to identify routing
devices. SysName information is also downloaded for use if this optional naming
scheme is required. The insertion of data into the returns table triggers a stitcher
that sends this information to the Associated Address agent.
Related concepts:
“Discovering device details (standard)” on page 287
The standard discovery of device details is carried out in several steps.

Associated Address (AssocAddress) agent
This mandatory agent is triggered by the output of the Details agent. The SNMP
helper configuration for associated devices is a prerequisite for running this agent.

When an interface on a device has been discovered, and basic device information
has been retrieved by the Details agent, a stitcher passes the discovered device
information to the Associated Address agent. This agent downloads all the other IP
addresses associated with the device and adds them to a central registry, held in
the translations.ipToBaseName table, provided the device details are not already
in the registry. Downloading all the associated IP addresses ensures that any given
device is only interrogated once by the main discovery agents, thus reducing the
load on the agents. Any attempt to discover a device more than once (using
multiple interfaces) is blocked by the Associated Address agent as the device
details are already in the translations database.

Provided the device being checked has not already been discovered, a stitcher
sends the device details to the appropriate discovery agent for the retrieval of
device connectivity and protocol-specific information.
Related concepts:
“Discovering associated device addresses” on page 289
There are several steps in the process flow during the discovery of associated
device addresses.

304 IBM Tivoli Network Manager IP Edition: Discovery Guide

Interface data retrieved by agents
The Interfaces agent downloads interface information from the interfaces table of
RFC1213.mib. For each device discovered, the interface information is written to
the m_LocalNbr field within each record in the relevant agent.returns table.

The Interfaces agent downloads interface information primarily from the interfaces
table of RFC1213.mib. For each device discovered, the interface information is
written to the m_LocalNbr field within each record in the relevant agent.returns
table. The interface information can hold a number of subfields, including an index
number that identifies the interface together with the properties of that interface
and values for each property. For example, the m_LocalNbr field may include the
following subfields:
v m_LocalNbr->m_IfIndex: the index associated with this interface
v m_LocalNbr->m_IfType: the type of interface
v m_LocalNbr->m_SubnetMask: the subnet mask of the interface
Related reference:
“Connectivity at the layer 3 network layer” on page 316
There are a number of discovery agents that retrieve connectivity information from
OSI model layer 3 (the Network Layer). Layer 3 is responsible for routing,
congestion control, and sending messages between networks.

Discovery agent definition file keywords
Discovery agent definition file keywords are used to define the operation of
discovery agents.

DiscoAgentClass

The DiscoAgentClass keyword specifies the basic type of agent. The following table
identifies the most commonly used values:

Value Description

0 Specifies an IP type agent.

1 Specifies a switch type agent.

2 Specifies a hub type agent.

3 Specifies an ATM device type agent.

4 Specifies an FDDI type agent.

5 Specifies a PVC type agent.

6 Specifies a frame relay type agent.

8 Specifies a NAT gateway agent.

The following example shows a DiscoAgentClass keyword set to a frame relay
type agent. Frame relay type agents typically discover Frame Relay interfaces and
connections between two points on Frame Relay networks that incorporate specific
network devices, for example, CISCO devices.
DiscoCompiledAgent
{
.
.
.
DiscoAgentClass(6);

Appendix C. Discovery agents 305

.

.

.
}

DiscoAgentClassEnabledByDefault

The DiscoAgentClassEnabledByDefault keyword specifies whether the agent is
enabled by default for full discoveries. Specify one of the following values:

Value Description

0 Specifies that the agent is not enabled by
default for full discoveries.

1 Specifies that the agent is enabled by default
for full discoveries.

The following example shows a DiscoAgentClassEnabledByDefault keyword set to
enable a frame relay type agent by default for full discoveries.
DiscoCompiledAgent
{
.
.
.
DiscoAgentClass(6);
.
.
.
DiscoAgentEnabledByDefault(1);
}

DiscoAgentClassEnabledByDefaultOnPartial

The DiscoAgentClassEnabledByDefaultOnPartial keyword specifies whether the
agent is enabled by default for partial discoveries. Specify one of the following
values:

Value Description

0 Specifies that the agent is not enabled by
default for partial discoveries.

1 Specifies that the agent is enabled by default
for partial discoveries.

The following example shows a DiscoAgentClassEnabledByDefaultOnPartial
keyword set to enable a frame relay type agent by default for partial discoveries.
DiscoCompiledAgent
{
.
.
.
DiscoAgentClass(6);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

306 IBM Tivoli Network Manager IP Edition: Discovery Guide

DiscoAgentIsIndirect

A direct agent returns relationship data about objects that it is directly connected to
at the layer it deals with. An indirect agent returns relationship data about objects
it is indirectly connected to. The most common indirect agents are switch agents.
The remote neighbor records for indirect agents relate to devices that can be
reached from a specific port, not from devices to which they are directly connected.
The relationship data from indirect agents is required to determine which remote
neighbor records of a device need to be rediscovered when the device changes.

The DiscoAgentIsIndirect keyword specifies whether the agent is an indirect
agent that returns relationship data about objects it is indirectly connected to.
Specify one of the following values:

Value Description

0 Specifies that the agent is a direct agent.

1 Specifies that the agent is an indirect agent.

The following example shows a DiscoAgentIsIndirect keyword set to specify that
a frame relay type agent is a direct agent.
DiscoCompiledAgent
{
.
.
.
DiscoAgentGUILocked(0);
DiscoAgentClass(6);
DiscoAgentIsIndirect(0);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

DiscoAgentCompanionAgents

The DiscoAgentCompanionAgents keyword is used to display in the GUI the agent
or agents that this agent should execute with.

The following example shows a DiscoAgentCompanionAgents keyword that displays
in the GUI the agent (ArpCache.agnt) that should execute with the Centillion
Networks agent.
DiscoCompiledAgent
{
.
.
.
-- This agent examines all devices originally made by Centillion
-- Networks (enterprise OID 1.3.6.1.4.1.930), to see if it can
-- discover them.
.
.
.

DiscoAgentCompanionAgents("ArpCache");

Appendix C. Discovery agents 307

.

.

.
}

DiscoAgentCompletionPhase

The DiscoAgentCompletionPhase keyword specifies during which of the discovery
phases the specified agent should complete executing. Specify one of the following
values:

Value Description

1 Specifies that the agent should complete
execution during discovery phase 1.

2 Specifies that the agent should complete
execution during discovery phase 2.

3 Specifies that the agent should complete
execution during discovery phase 3.

The following example shows a DiscoAgentCompletionPhase keyword set to enable
a frame relay type agent to complete execution during discovery phase 1.
DiscoCompiledAgent
{
.
.
.
DiscoAgentCompletionPhase(1);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

DiscoAgentConflictingAgents

The DiscoAgentConflictingAgents keyword is used to display in the GUI the agent
or agents that this agent should not execute with.

The following example shows a DiscoAgentConflictingAgents keyword that
displays in the GUI the agents (IpRoutingTable.agnt and IpForwardingTable.agnt)
that should not execute with the IP backup routes agent.
DiscoCompiledAgent
{
.
.
.
-- This agent examines every device with SNMP access to see if it
-- can discover it.
.
.

DiscoAgentConflictingAgents("IpRoutingTable","IpForwardingTable");
.
.
.
}

308 IBM Tivoli Network Manager IP Edition: Discovery Guide

DiscoAgentDescription

The DiscoAgentDescription keyword specifies a description of the agent that is
displayed in the GUI.

The following example shows a DiscoAgentDescription keyword that specifies a
description to display in the GUI for a frame relay type agent. The description
makes use of HTML coding.
DiscoCompiledAgent
{
.
.
.
DiscoAgentDescription("
Agent Name : CiscoFrameRelay

Agent Type : Layer 3

Agent Prerequisites : SNMP helper configuration for associated devices.

Operation :

Discovers Frame Relay interfaces and connections between two points on Frame Relay
networks that incorporate Cisco devices. If you need to add DLCI information to the
interfaces of Frame Relay devices, then run Frame Relay agents in conjunction with
the IP layer agents.

");
.
.
.
}

DiscoAgentMinCertifiedDeviceOS

The DiscoAgentMinCertifiedDeviceOS keyword specifies a device operating system
specific filter. This filter can be configured to run the specified agent against
specific releases of a device operating system.

The following example shows a DiscoAgentMinCertifiedDeviceOS keyword that
specifies a device operating system specific filter for an agent that discovers MPLS
VRFs, VPNs, and label switching information from CISCO routers. This device
operating specific filter configures the agent to run against the following CISCO
devices and associated operating system releases:
v m_ObjectId — Specifies the CISCO devices (OID 1.3.6.1.4.1.9) that the agent

attempts to discover.
v m_OSVersion — Specifies the CISCO device operating system filter that

configures the agent to run against the following device operating system
versions:
– 12.0 releases of 12.0(27) or later which are not experimental
– 12.2 releases of 12.2(19) or later which are not experimental
– 12.3 releases of 12.3(18) or later which are not experimental
– 12.4 releases

DiscoCompiledAgent
{
.
.
.
DiscoAgentMinCertifiedDeviceOS

(

Appendix C. Discovery agents 309

"(
m_ObjectId LIKE ’1\.3\.6\.1\.4\.1\.9\.’,
m_OSVersion >= ’12.0(27)’ AND m_OSVersion < ’12.1’ AND m_OSVersion

NOT LIKE ’.*Experimental.*’,
m_MibVar = ’sysDescr.0’

),
(

m_ObjectId LIKE ’1\.3\.6\.1\.4\.1\.9\.’,
m_OSVersion >= ’12.2(19)’ AND m_OSVersion < ’12.3’ AND m_OSVersion

NOT LIKE ’.*Experimental.*’,
m_MibVar = ’sysDescr.0’

),
(

m_ObjectId LIKE ’1\.3\.6\.1\.4\.1\.9\.’,
m_OSVersion >= ’12.3(18)’ AND m_OSVersion < ’12.4’ AND m_OSVersion

NOT LIKE ’.*Experimental.*’,
m_MibVar = ’sysDescr.0’

),
(

m_ObjectId LIKE ’1\.3\.6\.1\.4\.1\.9\.’,
m_OSVersion >= ’12.4’,
m_MibVar = ’sysDescr.0’

)"
);

.

.

.
}

DiscoAgentPrecedence

The DiscoAgentPrecedence keyword specifies which agent gets precedence when
there is conflicting data from two agents. Specify a value that is greater than or
equal to 0 (zero). The recommended range of values is from 1 to 100, where the
higher the number the higher the precedence. The higher the precedence the more
that agent data is correct. For example, if given conflicting data from a precedence
2 agent and a precedence 3 agent then the precedence 3 agent data is used.

The following example shows a DiscoAgentPrecedence keyword for a frame relay
type agent set to a precedence of 2.
DiscoCompiledAgent
{
.
.
.
DiscoAgentGUILocked(0);
DiscoAgentClass(6);
DiscoAgentIsIndirect(0);
DiscoAgentPrecedence(2);
.
.
.
DiscoAgentEnabledByDefaultOnPartial(1);
DiscoAgentEnabledByDefault(1);
}

DiscoPerlAgent

The DiscoPerlAgent keyword specifies whether this .agnt file refers to a Perl
agent.

The following example shows a DiscoPerlAgent keyword specified for a Perl based
agent that extracts information about the operating system running on the device.

310 IBM Tivoli Network Manager IP Edition: Discovery Guide

DiscoPerlAgent
{
.
.
.
DiscoAgentGUILocked(0);
DiscoAgentClass(0);
DiscoAgentIsIndirect(0);
DiscoAgentPrecedence(2);
DiscoAgentEnabledByDefaultOnPartial(0);
DiscoAgentEnabledByDefault(0);
}

Types of agents
The agents supplied with Network Manager can be divided into categories
according to the type of data they retrieve or the technology they discover.
Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“TelnetStackPasswords.cfg configuration file” on page 78
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.

Discovering connectivity among Ethernet switches
Discovery agents that discover connectivity information between Ethernet switches
have three main operational stages: gain access to the switch and download all the
switch interfaces; discover VLAN information for the switch; download the
forward database table for the switch.

A list of the discovery agents that handle Ethernet switches is shown in Table 136.

Note: Before enabling these layer 2 agents, it is necessary to configure SNMP
access. Some agents also require Telnet access and Telnet Helper configuration.
This is specified where required.

Table 136. Ethernet switch discovery agents

Agent name Function

AccelarSwitch The AccelarSwitch agent contains the specialized methods
for retrieving connectivity information from Accelar
routing switches. These devices are now branded as the
Nortel Passport 86xx series. This agent also discovers
BayStack 450 and BayStack 470 devices.

This agent downloads the switch forwarding database
(FDB) table and the VLAN information for the device. The
switch stitcher uses this information to resolve layer 2
Ethernet connectivity.

Appendix C. Discovery agents 311

Table 136. Ethernet switch discovery agents (continued)

Agent name Function

BayEthernetHub The BayEthernetHub agent discovers hub cards
manufactured by Bay. Connectivity information is
downloaded from the hub and the connectivity is resolved
by the HubFdbToConnections stitcher.

Before enabling this agent, it is also necessary to configure
the SNMP Helper.

CentillionSwitch The CentillionSwitch agent contains the methods needed
to retrieve and resolve information from the Centillion
switching devices, in particular the enterprise-specific
VLAN information.

ChipcomDistributedMM The ChipcomDistributedMM agent discovers the Ethernet
switch connectivity for 3Com CoreBuilder 5000 devices
containing distributed management modules.

ChipcomEthernetMM The ChipcomEthernetMM agent is appropriate for
Chipcom online concentrators containing Ethernet
Management Modules (EMMs), and discovers the Ethernet
connectivity of Chipcom EMMs.

CiscoSRP The CiscoSRP agent discovers the connectivity of networks
using the Spatial Reuse Protocol (SRP), that is, DPT Ring
topologies. SRP is a layer 2 protocol developed by Cisco
that uses ‘side' information to identify adjacent neighbours
in its ring topology.The CiscoSRP agent discovers
connectivity of any device that supports the
CISCO-SRP-MIB. The agent definition file is configured by
default to accept only Cisco devices with any IOS version,
except those supported by the CiscoSRPTelnet agent. The
agent only accepts devices that support the
srpMacAddress MIB variable.

IOS version 12.2(14)S7 and 12.2(18)S, used with NPE-G1
cards, are known to corrupt SNMP data.IOS version
12.2(15)BC1 is known to lack CISCO-SRP_MIB support.

CiscoSRPTelnet The CiscoSRPTelnet agent discovers the connectivity of
networks using the Spatial Reuse Protocol (SRP), that is,
DPT Ring topologies. SRP is a layer 2 protocol developed
by Cisco that uses ‘side' information to identify adjacent
neighbours in its ring topology. The CiscoSRPTelnet agent
discovers the connectivity of any device that supports the
show controllers srp command. The agent definition file is
configured to only accept Cisco devices that have an IOS
known not to support the CISCO-SRP-MIB and those IOS
versions that have known issues with SNMP discovery.IOS
version 12.2(14)S7 and 12.2(18)S, used with NPE-G1 cards,
are known to corrupt SNMP data.IOS version 12.2(15)BC1
is known to lack CISCO-SRP_MIB support.
Note: Before enabling this agent, it is necessary to
configure Telnet access and the Telnet Helper.

312 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 136. Ethernet switch discovery agents (continued)

Agent name Function

CiscoSwitchSnmp The CiscoSwitchSnmp agent contains the specialized
methods for retrieving information from Cisco switches
using SNMP. This agent uses a variety of methods for
finding VLANs and card or port to ifIndex mappings
because different Cisco switches store this information in
different MIB variables.

When discovering devices using SNMPv3, the Cisco
switches must have the VLAN context added to the view
group for each VLAN.

CiscoSwitchTelnet The CiscoSwitchTelnet agent contains specialized methods
for retrieving connectivity information from Cisco switches
using Telnet. This agent uses a variety of methods to find
VLANs and card/port to ifIndex mappings because
different Cisco switches store this information in different
MIB variables. Only FDB tables are downloaded using
Telnet. All other information is downloaded using SNMP.

The Telnet commands used to obtain the FDB table are
show cam dynamic and show mac-address table.

Some devices might require enable mode in order to run
the show mac-address table command.
Note: Before enabling this agent, it is necessary to
configure SNMP and Telnet access and their respective
Helpers.

CiscoVSS The Cisco VSS agent discovers Virtual Switching System
information from Cisco switches.

Corebuilder3ComSwitch The Corebuilder3ComSwitch agent discovers links for the
CoreBuilder 9000 layer 3 switches manufactured by 3Com.

DasanSwitchTelnet The DasanSwitchTelnet agent is responsible for the
discovery of the layer 2 connectivity held in the
FDB/MAC table of Dasan switches. The agent was
developed against the following devices:V5208 (OS
9.07)V5224 (OS 9.10)The agent is able to discover layer 2
connectivity, VLANs and trunk ports. It is configured to
only run against devices with a sysObjectID of
1.3.6.1.4.1.6296.* and that support the command show
vlan.
Note: Before enabling this agent, it is necessary to
configure Telnet access and the Telnet Helper.

DefaultEthernetHub This agent has a specialized class for dealing with
semi-intelligent hubs.

EnterasysSwitch The EnterasysSwitch agent provides layer 2 connectivity
discovery by retrieving the FDB table and VLAN
information from the device. The agent discovers layer 2
connectivity for devices that support the IEEE 802.1q or
IEEE 802.1d standards, as modelled in the Q-BRIDGE-MIB
and BRIDGE-MIB SNMP MIBs respectively.
Note: This agent is used for Enterasys devices that do not
have SecureFast turned on.

Appendix C. Discovery agents 313

Table 136. Ethernet switch discovery agents (continued)

Agent name Function

ExtremeSwitch The ExtremeSwitch agent obtains layer 2 connectivity
information, EDP neighbours, and VLAN details from
Extreme switches.

The Extreme devices must be configured to enable SNMP
access and dot1dFdbTable population to achieve a detailed
layer 2 discovery. Send the following commands to each
Extreme device:

v enable snmp access

v enable dot1dFdbTable

This configuration change is only required on switches
running a version of ExtremeWare® prior to 6.1.8.

FoundrySwitch The FoundrySwitch agent discovers switch connectivity of
any Foundry device that supports the IEEE 802.1q or IEEE
802.1d standards, as modelled in the Q-BRIDGE-MIB and
BRIDGE-MIB SNMP MIBs respectively.

The agent definition file is configured to accept all
SNMP-enabled Foundry devices by default. The agent will
only discover devices that support the Q-BRIDGE-MIB
dot1qVlanVersionNumber MIB variable or the
BRIDGE-MIB.The FoundrySwitch agent also obtains
multislot port trunking information, but does not discover
single-slot port trunking.Some Foundry devices only
support IEEE 802.1d and, as a consequence, no VLAN
information is discovered for these devices.

HuaweiSwitchTelnet The HuaweiSwitchTelnet agent discovers the Ethernet
switch connectivity for Huawei Quidway switches.

This agent is Telnet-based, but also requires SNMP access
to discover certain information. It requires completion of
the Privileged mode (Super 3 mode) sections of the
TelnetStackPasswords.cfg configuration file. Failure to
complete these sections will result in the agent failing.

Certain Telnet commands have the side-effect of changing
the command prompt of a Huawei device. For example,
the command prompt:

<device_name> becomes

[device_name] or

[device_name-diag] when certain commands are issued.

It is essential that the parameters m_ConPrompt and
m_PrivConPrompt in TelnetStackPasswords.cfg are
configured to cope with these variations.
Note: Before enabling this agent, it is necessary to
configure Telnet access and the Telnet Helper.

HPSwitch The HPSwitch agent contains the specialized methods for
retrieving connectivity information from HP ProCurve
switches, including the download of enterprise-specific
VLAN information.

314 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 136. Ethernet switch discovery agents (continued)

Agent name Function

Marconi3810 The Marconi3810 specialised agent discovers the Ethernet
connectivity of Marconi ES-3810 switches running
operating system version 4.x.x and 5.x.x. This agent also
removes connectivity from LANE interfaces by default -
this can be configured using the GetElanData flag in the
.agnt file.

NortelSwitch The NortelSwitch agent retrieves Layer 2 connectivity
information, including Split Level Multi-Trunking (SMLT)
information, from Nortel switches.

SecureFast The SecureFast agent contains the specialized methods for
retrieving connectivity information from
Enterasys/Cabletron SecureFast VLAN switches. These
devices use the Cabletron Discovery Protocol to discover
their neighbours and have SecureFast operating mode
turned on. This agent is sent to all Cabletron and
Enterasys devices, specified by 1.3.6.1.4.1.52.* and
1.3.6.1.4.1.5624.* in the .agnt file, and determines whether a
device is SecureFast enabled by downloading the
sfpsCommonNeighborSwitchMAC MIB variable.

Devices in SecureFast mode do not support the
dot1dBridge MIBs.

StandardSwitch The StandardSwitch generic agent provides layer 2
connectivity discovery of all switches for which a
specialized agent does not exist. The agent discovers layer
2 connectivity for devices that support the IEEE 802.1q or
IEEE 802.1d standards, as modelled in the Q-BRIDGE-MIB
and BRIDGE-MIB SNMP MIBs respectively.

Devices in SecureFast mode do not support the
dot1dBridge MIBs.

SuperStack3ComSwitch The SuperStack3ComSwitch agent finds the connections in
stacked switches manufactured by 3Com.

XyplexEthernetHub The XyplexEthernetHub agent discovers the layer 2
connectivity of intelligent hubs manufactured by Xyplex.

Appendix C. Discovery agents 315

Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“TelnetStackPasswords.cfg configuration file” on page 78
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.
“DiscoSnmpHelperSchema.cfg configuration file” on page 70
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.
“DiscoTelnetHelperSchema.cfg configuration file” on page 71
The DiscoTelnetHelperSchema.cfg configuration file defines the operation of the
Telnet helper, which returns the results of a Telnet operation into a specified
device.

Connectivity at the layer 3 network layer
There are a number of discovery agents that retrieve connectivity information from
OSI model layer 3 (the Network Layer). Layer 3 is responsible for routing,
congestion control, and sending messages between networks.

Table 137. Layer 3 network layer agents

Agent name Function

AlteonVRRP VRRP is not modelled for RCA. The AlteonVRRP agent only sets tags on VRRP
interfaces that show the state of Alteon routers at the time of the discovery.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

CiscoBGPTelnet The CiscoBGPTelnet agent downloads the following BGP data from Cisco routers:

v Peer data: the agent retrieves iBGP and eBGP data from peer routers.

v Route data: the agent retrieves routing information from BGP routing tables of
peer routers. This option is off by default as it will retrieve huge amounts of
data from a typical service provider network. This agent also provides the option
to configure a filter to specify the route data that you would like to retrieve.

Note: Before enabling this agent, configure Telnet access and the Telnet helper.

CiscoFrameRelay The CiscoFrameRelay agent discovers Frame Relay interfaces and connections
between two points on Frame Relay networks that incorporate Cisco devices.
Frame Relay agents should be run in conjunction with the IP layer agents if you
want to add DLCI information to the interfaces of Frame Relay devices.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

CiscoOSPFTelnet The CiscoOSPFTelnet agent is responsible for discovery of Cisco devices running
the Open Shortest Path First (OSPF) protocol. This agent provides complementary
information to that of the StandardOSPF agent, such as what OSFP processes are
running and virtual-link information.
Note: Before enabling this agent, configure Telnet access and the Telnet helper.

ExtremeESRP The ExtremeESRP agent discovers Extreme Standby Routing Protocol (ESRP)
information from Extreme routing switches. ESRP is a feature of ExtremeWare that
allows multiple switches to provide redundant routing services to users. The agent
relies on the extremeEsrpTable and extremeEsrpNeighborTable of the
EXTREME-ESRP-MIB being correctly populated.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

316 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 137. Layer 3 network layer agents (continued)

Agent name Function

FoundryVRRP VRRP is not modelled for RCA. The FoundryVRRP agent only sets tags on VRRP
interfaces that show the state of Foundry routers at the time of the discovery.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

HSRPSnmp The HSRPSnmp agent uses SNMP to retrieve information from routing devices that
use the HSRP (Hot Stand-by Routing Protocol) Virtual IP protocol. The HSRPSnmp
agent retrieves data on primary and secondary HSRP IP addresses, which is used
for interface discovery and visualization.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

InetRouting The InetRouting agent discovers connectivity.

Interfaces This agent is triggered by the AssocAddress agent returns.

The Interfaces agent downloads interface information primarily from the interfaces
table of RFC1213.mib. The information will then be written to the m_LocalNbr field
of the returned entities. You can increase or decrease the number of returned
variables by modifying the Interfaces.agnt. Any basic MIB variable (sysDescr,
sysName, and so on) or MIB variable that is indexed by the ifIndex can be added
to the OIDs to download in the .agnt file.

The Interfaces agent also retrieves IPv6 interface information.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

IpBackupRoutes The IpBackupRoutes agent finds links by looking through the IpNetToMedia MIB
table, which gives the physical and IP address of devices connected to the router.

This agent is not enabled by default because it retrieves a large amount of
information that is not essential in order to determine layer 3 connections.
Furthermore, this information may be obsolete because it is downloaded from a
table that is not dynamic and requires manual refresh. If you are performing a
layer 2 discovery, then the server connectivity that this agent discovers is often
obsolete, as it may have been superseded by switch connectivity information.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

IpForwardingTable The IpForwardingTable agent finds links in the more recent version of the routing
tables, that is, the IP Forwarding table as specified in RFC 2096. It also exploits
Open Shortest Path First (OSPF) information to enhance the discovery of Juniper
devices. This agent downloads elements from the routing table based on discovery
scoping. The default setting assumes that the SNMP agent for a particular device
supports partial matching. If the device cannot partial match, this should be
specified in the DiscoRouterPartialMatchRestrictions section of the .agnt file.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

IpRoutingTable Retrieves generic connectivity information by looking through the router routing
table, as specified in RFC1213. The agent downloads elements from the routing
table based on discovery scoping. The default agent setting assumes that the SNMP
agents for particular devices support partial matching. If a device cannot partial
match, this should be specified in the DiscoRouterPartialMatchRestrictions section
of the .agnt file.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

ISISExperimental Discovers connectivity between routers that support the experimental ISIS MIBs.
This agent should be used when some of your routers are configured with
netmasks of 255.255.255.255, making them unsuitable for standard discovery.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

LinkStateAdvOSPF Retrieves link state advertisements (LSAs) from OSPF routers. These LSAs are used
by the CreateOSPFNetworkLSAPseudoNodes stitcher to create OSPF pseudonodes.
Pseudonodes overcome the problem of full meshing when representing OSPF area
in Topoviz Network Views and enables connections within OSPF areas to be
visualized in a clear, uncluttered manner.

Appendix C. Discovery agents 317

Table 137. Layer 3 network layer agents (continued)

Agent name Function

JuniperBGPTelnet Downloads BGP information from Juniper routers. It is not enabled by default
because it gathers a very specific piece of information only, that is, whether devices
are route reflectors.
Note: Before enabling this agent, configure Telnet access and the Telnet helper.

JuniperMXGroupTelnet The JuniperMXGroupTelnet agent uses Telnet to discover logical collection
information for Routing Engine Groups on Juniper MX devices.

NetScreenInterface The NetScreenInterface agent retrieves information about all configured interfaces
in Juniper Netscreen devices. The agent retrieves information about logical
interfaces and other interfaces, which is not available from the standard IF-MIB,
and requires both the NETSCREEN-INTERFACE-MIB.mib and NS-VPN-MON.mib
files. The agent also retrieves VPN and tunnel connectivity information that is
configured in Juniper NetScreen devices.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

NetScreenIpRoutingTable The NetScreenIpRoutingTable agent retrieves information on IP routing tables
configured on Netscreen devices. The agent determines the interfaces and
sub-interfaces from the interface index of the Netscreen device.

This agent performs the same function as the IpRoutingTable agent, but for
Netscreen devices only, in order to take account of sub-interfaces which would not
be discovered correctly by the IpRoutingTable agent.

The NetScreenIpRoutingTable agent uses the IP-FORWARD-MIB Standard MIB and
the NETSCREEN-INTERFACE-MIB.
Note: The IpRoutingTable agent does not process the Netscreen devices processed
by the NetScreenIpRoutingTable agent.

NokiaVRRP Downloads VRRP information from routers that support the Nokia interpretation
of the VRRP MIB. The information retrieved includes the VRRP state, ID, primary
IP and associated addresses. This information is retrieved from the following MIB
variables:

v vrrpOperState

v vrrpOperMasterIpAddr

v vrrpAssoIpAddrRowStatus

Note: Before enabling this agent, configure SNMP access and the SNMP helper.

NortelPassport The NortelPassport agent retrieves Layer 3 connectivity and containment
information from Nortel Passport switches.

RFC2787VRRP The RFC2787VRRP agent downloads Virtual Router Redundancy Protocol (VRRP)
information from routers that run RFC2787-compliant VRRP and support the
RFC2787 VRRP MIB. Some Nokia firewalls support this MIB.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

VRRP is not modelled for RCA. This agent sets tags on VRRP interfaces that show
the state of the interfaces at the time of the discovery. The agent also downloads
associated IP addresses, which are used to build VRRP collections.
Tip: There are two subtly different versions of the VRRP MIB. They contain the
same names but with different OIDs. If this agent does not work, use the other
version of the VRRP MIB.

318 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 137. Layer 3 network layer agents (continued)

Agent name Function

StandardBgp The StandardBgp agent is responsible for discovery of networks running the
Border Gateway Protocol. It supports any device that complies with the standard
RFC1657 (BGP4-MIB) MIB and discovers the following information:

v Autonomous System IDs

v BGP Peer connections to external peers (EBGP)

v BGP Peer connections to internal peers (IBGP)

v BGP acquired route data (not recommended)

The agent definition file is configured to accept all SNMP enabled devices by
default, but the agent will only accept devices that support the BGP44-MIB,
bgpIdentifier MIB variable.

The agent has the following additional configuration parameters in the
DiscoAgentDiscoveryScoping section of its .agnt file:

v GetPeerData – determines whether the agent should acquire BGP Peer data
(activated by default).

v GetRouteData – determines whether the agent should acquire BGP routes
(deactivated by default). This may result in a large amount of data being
discovered.

The StandardBgp agent does not currently support peer groups, confederations, per
VRF BGP processes, or route reflection.
Note: Before enabling this agent, configure SNMP access and the SNMP helper. It
is also necessary to configure the Ping helper.

StandardOSPF The StandardOSPF agent is responsible for the discovery of networks running the
Open Shortest Path First (OSPF) protocol. It will support any device that complies
with the standard RFC1850.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

TraceRoute The TraceRoute agent finds links by tracing the route taken by an ICMP ping
packet with a predetermined life span. If you are using this agent, you should
increase the value of m_Timeout in the DiscoPingHelperSchema.cfg configuration
file, as traceroute functionality takes longer than standard ICMP. This agent is not
enabled by default as it does not only operate on SNMP-enabled devices.
Therefore, if this agent were switched on by default, it would trace the route to
every device on the network. The result could be incomplete connectivity in a
meshed environment or inaccurate connectivity in a load-balanced environment.
Note: Before enabling this agent, configure SNMP access and the SNMP helper.

Appendix C. Discovery agents 319

Related tasks:
“Configuring device access” on page 23
Specify SNMP community strings and Telnet access information to enable helpers
and Network Manager polling to access devices on your network.
Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“TelnetStackPasswords.cfg configuration file” on page 78
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.
“DiscoPingHelperSchema.cfg configuration file” on page 62
The DiscoPingHelperSchema.cfg configuration file defines how devices are to be
pinged.

Topology data stored in an EMS
There are several discovery agents that retrieve information about devices
managed by an EMS.

The routing protocol discovery agents query an EMS collector for basic and
detailed information about devices managed by EMS. These agents are shown in
Table 138.

Table 138. Routing protocol discovery agents

Agent name Function

CollectorDetails Retrieves basic information about the devices on the collector,
including sysObjectId, sysDescr, and naming data.

CollectorInventory Retrieves local neighbor, entity and associated address data for
each of the devices on the collector

CollectorLayer2 Retrieves layer 2 connectivity information for the devices on the
collector.

CollectorLayer3 Retrieves layer 3 connectivity information for the devices on the
collector.

CollectorVpn Retrieves layer 2 and layer 3 VPN data for the devices on the
collector.

Related concepts:
“Components of the EMS integration” on page 90
EMS integration is composed of several components that assist in the collection of
topology data.

320 IBM Tivoli Network Manager IP Edition: Discovery Guide

Discovering connectivity among ATM devices
Asynchronous Transfer Mode (ATM) is an alternative switching protocol for mixed
format data (such as pure data, voice, and video). Several types of discovery
agents can be used to discover ATM devices on a network.

Note: Before enabling these agents, it is necessary to configure SNMP access and
the SNMP Helper.

Table 139. ATM discovery agents

Agent name Function

AtmForumPnni The AtmForumPnni agent retrieves connectivity information from ATM devices that use the
Private Network-to-Network Interface (PNNI) dynamic routing protocol and the ATM
Forum's PNNI MIB. The PNNI protocol is commonly used on large networks, as it
provides ATM switches with a detailed map of the network topology so that the ATM
devices can make optimal routing decisions.

CellPath90 The CellPath90 agent enables discovery of the ATM connection of Marconi CellPath 90
WAN (Wide Area Network) multiplexers. The CellPath 90 WAN multiplexer does not know
the ATM addresses of its neighbours, so it can only be discovered when it is connected to
another, more intelligent, certified ATM device.

The CellPath90 discovery agent is used in the calculation of network topology. It places
information about the CellPath 90 into the correct layers within the discovery database.

CiscoPVC The CiscoPVC agent retrieves PVC data from Cisco devices.

CiscoSerialInterface
Telnet

The CiscoSerialInterfaceTelnet agent uses Telnet to retrieve Asynchronous Transport
Mechanism (ATM) connectivity information from Cisco devices. Use this agent if you have
Cisco routers that are connected by serial interfaces configured as ATM Private Virtual
Circuits (PVCs). You must run the Interface agent with the CiscoSerialInterfaceTelnet agent.

ILMI The ILMI agent retrieves connectivity information from devices using the Interim Local
Management Interface (ILMI), an RFC standard for managing ATM and IP networks. It
investigates how ATM networks are connected down to the layer 2 virtual circuit and port
level. This agent also removes logical connectivity from LANE interfaces.

ILMIForeSys The ILMIForeSys agent discovers physical ATM connections between devices by using the
ILMI (Interim Local Management Interface) connectivity information provided by the
Marconi ASX series of switches.

When connectivity is deduced using ILMI information, it is usually the same as the
connectivity that could have been calculated using PNNI information, as is the case with
the standard AtmForumPnni and ILMI agents. However, there are some situations where
the ILMI information contains details of a connection that is not in the PNNI information,
and some situations where the PNNI information details a connection not in the ILMI
information. The following examples detail situations where this may be the case:

v Connections between ASX series switches and SE420/SE440 IADs are only discovered
using ILMI.

v Connections between Cisco routers or switches containing ATM cards and an ATM core
are only discovered using ILMI.

v As with the PnniForeSys agent, the ILMIForeSys agent is designed to operate seamlessly
in conjunction with the ILMI agent. A network containing a mixture of ASX devices and
another vendor's devices (for example, Cisco 5509 switches with ATM cards) can,
therefore, be accurately discovered.

MariposaAtm The MariposaAtm agent discovers the ATM connectivity of the SE420 and SE440 Integrated
Access Devices (IADs).

Note: The Ethernet switching and Frame Relay capabilities of these devices are not
currently certified.

Appendix C. Discovery agents 321

Table 139. ATM discovery agents (continued)

Agent name Function

PnniForeSys The PnniForeSys agent discovers physical ATM connections between devices by using the
Private Network-to-Network Interface (PNNI) connectivity information provided by the
Marconi ASX series switches. The PnniForeSys agent is designed to operate in conjunction
with the AtmForumPnni agent.

The PnniForeSys agent performs extra processing on Fore devices that do not store a logical
ifIndex in their pnniLinkIfIndex variable. The information retrieved from these devices
requires further processing to retrieve the actual ifIndex, which is held within the ifTable .
Note: SNMP helper configuration for associated devices is a prerequisite for this agent. The
AtmForumPnni agent must also be active.

Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“DiscoSnmpHelperSchema.cfg configuration file” on page 70
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.

Discovering MPLS devices
To discover Multiprotocol Label Switching (MPLS) data, including Virtual Private
LAN Service (VPLS) information, enable the appropriate agents.

The agents that retrieve MPLS data use either Telnet or SNMP to retrieve the data.
Before enabling the MPLS agents, configure Telnet and SNMP access.
v Before enabling the MPLS agents that use Telnet, ensure that you have

configured Telnet to enable the agents to access devices and to understand
device output.

v Before enabling the MPLS agents that use SNMP, configure SNMP to enable
access to devices and to specify threads, timeouts, and number of retries.

Tip: Agents that retrieve VPLS information can retrieve large amounts of data.
Enabling these agents can add significant processing time to the discovery process.
If you do not need to rediscover VPLS information, disable these agents for a faster
discovery.

Table 140. MPLS discovery agents

Agent name Function

CiscoMPLSSnmp The CiscoMPLSSnmp agent discovers MPLS paths on Cisco
devices using standard MIBs, and on Cisco devices that
support the Cisco Experimental MPLS MIBs.

CiscoMPLSTelnet The CiscoMPLSTelnet agent discovers MPLS paths and LDP
VPLS on Cisco devices.

CiscoQinQTelnet The CiscoQinQTelnet agent discovers QinQ (IEEE 802.1QinQ)
conguration on Cisco devices.

HuaweiMPLSTelnet The HuaweiMPLSTelnet agent discovers Layer 2 and Layer 3
MPLS/VPN related data on Huawei devices.

322 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 140. MPLS discovery agents (continued)

Agent name Function

JuniperMPLSTelnet The JuniperMPLSTelnet agent discovers MPLS paths on
Juniper devices. This agent also discovers Juniper MultiHome
VPLS configurations and tags the Virtual Switch Instance (VSI)
accordingly.

JuniperMPLSSNMP The JuniperMPLSSNMP agent discovers MPLS/VPN (RT-based
VPN discovery) and VPLS (LDP and BGP) related data on
Juniper devices.

JuniperQinQTelnet The JuniperQinQTelnet agent discovers QinQ (IEEE 802.1QinQ)
conguration on Juniper devices.

LaurelMPLSTelnet The LaurelMPLSTelnet agent discovers MPLS paths on Laurel
devices. This agent is intended for route target-based
discoveries only.

StandardMPLSTE The StandardMPLSTE discovers MPLS Traffic Engineered (TE)
tunnels using SNMP.

UnisphereMPLSTelnet The UnisphereMPLSTelnet agent discovers MPLS paths on
Juniper ERX routers (formerly Unisphere).

Multicast agents
Multicast agents retrieve data from devices participating in multicast groups and
routes.

The agents that retrieve multicast data need SNMP and Ping access to retrieve the
data. Before enabling the multicast agents, ensure that you first configured SNMP
to enable the agents to access devices and to specify threads, timeouts, and number
of retries.

The following table describes the multicast agents.

Table 141. Multicast discovery agents

Agent name Function

StandardIGMP Discovers networks running the Internet Group Management
Protocol (IGMP). Supports any device that complies with the
RFC2933 IGMP MIB. Depending on the level of MIB support,
the following information may be discovered: IGMP Interfaces;
Per-Interface Group Memberships; Group Members Visible on
IGMP Interfaces.

StandardIPMRoute Discovers IP multicasting networks. Supports any device that
complies with the RFC2932 IPMRoute MIB. Depending on the
level of MIB support, the following information may be
discovered: Multicast Routing data (upstream/downstream);
Interfaces involved in Multicast Routing; Multicast Sources and
Groups.

StandardPIM Discovers networks running the Multicast protocol PIM.
Supports any device that complies with the RFC2934 PIM MIB.
Depending on the level of MIB support, the following
information may be discovered: PIM Interfaces; PIM
Adjacencies; Candidate RPs/BSR.

Appendix C. Discovery agents 323

Related tasks:
“Enabling the multicast agents” on page 34
To discover multicast groups, you must enable the appropriate agents and add the
relevant SNMP community strings.

Discovering NAT gateways
There are several agents that download Network Address Translation (NAT)
information from known NAT gateways.

None of the agents listed in the table below is enabled in the default configuration.
These agents require advanced configuration, and it is preferable not to enable
them by default.

Table 142. NAT gateway agents

Agent name Function

CiscoNATTelnet The CiscoNATTelnet agent interrogates Cisco routers acting as NAT
gateways. This agent downloads the static NAT translations by means
of TELNET from the device. The translations are then used to identify
within which part of the network a particular device exists.
Note: Before enabling this agent, it is necessary to configure Telnet
access and the Telnet Helper.

NATNetScreen The NATNetScreen agent interrogates NetScreen® Firewalls acting as
NAT gateways. This agent downloads the static NAT translations by
means of TELNET from the device. The translations are then used to
identify within which part of the network a particular device exists.
Note: Before enabling this agent, it is necessary to configure Telnet
access and the Telnet Helper.

NATTextFileAgent The NATTextFileAgent mimics the function of the other NAT gateway
agents by reading NAT mapping information from a flat file. The
translations are then used to identify within which part of the network
a particular device exists.
Note: Before enabling this agent, it is necessary to configure SNMP
access and the SNMP Helper.

Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“TelnetStackPasswords.cfg configuration file” on page 78
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.
“DiscoSnmpHelperSchema.cfg configuration file” on page 70
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.
“DiscoTelnetHelperSchema.cfg configuration file” on page 71
The DiscoTelnetHelperSchema.cfg configuration file defines the operation of the
Telnet helper, which returns the results of a Telnet operation into a specified
device.

324 IBM Tivoli Network Manager IP Edition: Discovery Guide

Discovering containment information
An important principle used by the network model is containment. A container
holds other objects. You can put any object within a container and even mix
different objects within the same container.

Containment information includes a physical breakdown of all parts held within
the container, as well as detailed information on each of these parts. The parts that
can be held within a container are:
v Chassis
v Interface
v Logical interface
v Vlan object
v Card
v PSU
v Logical collection, such as a VPN
v Module

There is also an Unknown category, which covers entities for which no part type
has been defined.

The following table describes the discovery agents that discover containment
information.

Table 143. Discovery agents that discover containment information

Agent name Function

AvayaPhysicalInventory The AvayaPhysicalInventory agent queries RAPID-CITY MIB for each physical
entity and retrieves containment information for that physical entity. Run the
AvayaPhysicalInventory agent if you want to model physical containment and
perform asset management. Enable this agent if you have Avaya (formerly Nortel)
devices in your network.
Note: Configure SNMP access and the SNMP Helper before enabling this agent.

BNTSwitch The BNTSwitch agent retrieves Layer 2 connectivity and VLAN containment
information (including VLAN tags, VLAN Trunk, and Trunk Group information)
using SNMP.

Appendix C. Discovery agents 325

Table 143. Discovery agents that discover containment information (continued)

Agent name Function

Entity The Entity agent queries the MIB for each entity and retrieves containment
information for that entity. Before enabling this agent, you must configure SNMP
access and the SNMP Helper.

Running the Entity agent during a discovery is optional. Some containment
information is gathered during a discovery even if the Entity agent is not run. Run
the Entity agent to model physical containment and perform asset management.
Note: During a discovery, the Entity agent retrieves a large amount of data. This
slows down the discovery. You should therefore only use this agent if you need to
perform asset management on the retrieved data.

You can configure the Entity agent to specify how much data the agent should
retrieve. You can optionally choose to download this extra information from the
entity MIBs of the , , Asset, ExtraPhysData, Module, Power, and Sensor entities. Do
this by setting the following variables in the Entity.agnt file:

v GetAssetData

v GetExtraPhysData

v GetModuleData

v GetPowerData

v GetSensorData

In each case, set a value of 1 to retrieve the data, and set a value of 0 if you do not
want to retrieve the data. The default value is 1.

In addition, you can specify how the Entity agent retrieves data from devices. The
options are as follows:

0 GetNext
This is the default value.

Using this data retrieval option, the system requests one SNMP variable at
a time from the device in series, that is, retrieval of one column in a table,
one value at a time for a given device. This approach is slower but puts
least pressure on the device. In a discovery with multiple entities the
expectation is that overall this approach will not slow down the discovery
as the SNMP helper is still busy with other activities. This approach might
take a long time for individual large devices. This method works with
SNMP version 1.

1 Asynchronous GetNext
Similar to the GetNext method in that one index is retrieved at a time
with the difference that all the columns are retrieved in parallel. This is
also supported by SNMP version 1 and is faster but it also puts slightly
more load on the device.

2 GetBulk
Requests the entire column or multiple columns and individual Get
commands in one go. This method requires SNMP version 2 support. If
the device only supports version 1 then the retrieval method is broken
down into multiple SNMP Get Next and Get commands. This is the fastest
retrieval and it does not put much more load on the device than the
Asynchronous GetNext method. This method also involves larger packets
on the network.

Note: The Entity.agnt file, together with all other agent configuration files, can be
found in the $NCHOME/precision/disco/agents directory.

IfStackTable The IfStackTable determines the interface stacking hierarchy on devices that
support the RFC 2863 MIB.
Note: Configure SNMP access and the SNMP Helper before enabling this agent.

326 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 143. Discovery agents that discover containment information (continued)

Agent name Function

JuniperBoxAnatomy The JuniperBoxAnatomy agent retrieves information about which modules and
components are installed in a Juniper device and their containment. The agent uses
vendor-specific MIBs such as the Juniper Box Anatomy MIB.

JuniperERXIfStackTable The JuniperERXIfStackTable determines the interface stacking hierarchy on Juniper
ERX devices.

This agent determines virtual-router and VRF context-sensitive stacking
information for Juniper ERX devices. When a context-sensitive discovery is enabled
this agent can be disabled, as the IfStackTable agent also determines this
information. This will improve the performance of Discovery.
Note: Configure SNMP access and the SNMP Helper before enabling this agent.

JuniperLAGStack The JuniperLAGStack agent retrieves Link Aggregation Group (LAG) information
from Juniper devices. LAG information is needed to accurately represent the
interface stacking hierarchy.

Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“DiscoSnmpHelperSchema.cfg configuration file” on page 70
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.

Discovery agents on other protocols
Network Manager provides agents that discover devices that use other protocols
than ones previously described.

Note: Before enabling these agents, it is necessary to configure SNMP access and
the SNMP Helper.

Table 144. Discovery agents on other protocols

Agent name Function

AlteonStp This is a Spanning Tree Protocol discovery agent for Alteon switches that
support the dot1dStp section of the BRIDGE-MIB.

CDP The CDP agent understands the protocol used among Cisco
communication devices. Using CDP, Cisco devices can discover their
nearest neighbors and store minimal information about them.

This agent begins with the address of a known Cisco device and uses
CDP to find more complete information about the locations of other
connected or neighboring Cisco devices.

Appendix C. Discovery agents 327

Table 144. Discovery agents on other protocols (continued)

Agent name Function

DefaultLLDP The DefaultLLDP agent discovers layer 2 connectivity between devices
that support the LLDP MIB and have Link Layer Discovery Protocol
(LLDP) enabled.

Both the LLDP and DefaultLLDP agents use data from the LLDP MIB
that is indexed by lldpRemLocalPortNum. This variable indicates which
ifIndex or port a particular LLDP connection exists on. The LLDP agent
supports devices where lldpRemLocalPortNum refers to the ifIndex on
the device: typically, Cisco devices. The DefaultLLDP agent supports
devices where lldpRemLocalPortNum refers to the port or other
arbitrarily assigned index: typically, non-Cisco devices such as Juniper or
BNT devices.

The DefaultLLDP agent checks if the device supports the
Extended-LLDP-MIB. If the device does not support the
Extended-LLDP-MIB, lldpRemLocalPortNum is assumed to be a switch
port. The agent then uses the dot1dBasePortIfIndex variable from the
BRIDGE-MIB to determine the ifIndex of this record. Enable both the
LLDP and DefaultLLDP agents so that Network Manager is able to find
LLDP connectivity on devices that have different implementations of
lldpRemLocalPortNum.

FddiDefault The FddiDefault agent discovers any device that supports the standard
FDDI MIB. When an FDDI device is interrogated, information relating to
the interfaces of that device and its upstream and downstream
neighbours is returned. The FddiLayer stitcher uses this and all other
FDDI agents to determine the FDDI ring topology.

FddiCiscoConc The FddiCiscoConc agent discovers Cisco Concentrator FDDI devices.
Cisco concentrators know the full connectivity of every FDDI ring that
passes though them, as opposed to just their upstream and downstream
neighbours. Hence the FddiLayer stitcher gives the topology information
returned by this agent precedence over that found by FddiDefault.

LLDP The LLDP agent discovers layer 2 connectivity between devices that
support the LLDP MIB and have Link Layer Discovery Protocol (LLDP)
enabled.

Both the LLDP and DefaultLLDP agents use data from the LLDP MIB
that is indexed by lldpRemLocalPortNum. This variable indicates which
ifIndex or port a particular LLDP connection exists on. The LLDP agent
supports devices where lldpRemLocalPortNum refers to the ifIndex on
the device: typically, Cisco devices. The DefaultLLDP agent supports
devices where lldpRemLocalPortNum refers to the port or other
arbitrarily assigned index: typically, non-Cisco devices such as Juniper or
BNT devices.

The LLDP agent checks if the device supports the Extended-LLDP-MIB.
If it does, the agent retrieves the mapping between
lldpRemLocalPortNum and ifIndex. If the device does not support the
Extended-LLDP-MIB, lldpRemLocalPortNum is assumed to be the
ifIndex. Enable both the LLDP and DefaultLLDP agents so that Network
Manager is able to find LLDP connectivity on devices that have different
implementations of lldpRemLocalPortNum.

SONMP The SONMP agent uses the SynOptics Network Management Protocol,
the protocol used between Nortel communications devices. The SONMP
agent begins with the address of a known Nortel device and uses
SONMP to discover location, containment, address, and connection
information from connected, or neighbouring, Nortel devices.

328 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 144. Discovery agents on other protocols (continued)

Agent name Function

StandardSTP The StandardSTP agent discovers STP connectivity data on any
STP-enabled switch that supports the dot1dSTP section of the
BRIDGE-MIB. You should run this agent in addition to any other
necessary switch agents in order to discover STP backup (blocking)
connections.

The STP switch discovery method has the following advantages over
other switch-based discovery methods:

v Hidden links: STP backup (blocking) connections are discovered.

v Speed: the agent completes in Phase 1; no pinging is required.

Note : The STP agent only shows connections between STP enabled
switches, that is, it ignores connections to nodes, non-switch devices, and
non-STP enabled switches.

This agent will not discover multiple STP instances, VLANs, or Virtual
Routers.

Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“DiscoSnmpHelperSchema.cfg configuration file” on page 70
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.

Context-sensitive discovery agents
There are several agents that take part in a context-sensitive discovery.

Attention: When a context-sensitive discovery is enabled, the discovery process
automatically chooses the correct Context agent for any particular device. For this
reason, you should not manually enable or disable Context agents, either through
the configuration files or through the Discovery Configuration GUI.

Note: These agents require Telnet access and the Telnet Helper.

Table 145. Context-sensitive discovery agents

Agent Name Function

RedbackContext The RedbackContext agent discovers virtual router
context-sensitive information for Redback® devices.

Appendix C. Discovery agents 329

Table 145. Context-sensitive discovery agents (continued)

Agent Name Function

UnisphereERXContext The UnisphereERXContext agent discovers virtual router and VRF
context-sensitive information for Juniper ERX devices.

You can restrict the scope of the VRF contexts discovered by
configuring the optional DiscoAgentDiscoveryScoping section in
the .agnt file. The configurable options are:

v IncludeVRF – allows the discovery of the named VRF.

v ExcludeVRF – does not discover the specified VRF.

VRF names are case-sensitive. The wildcard " * " can be used in
place of a VRF name to apply the filter to all VRFs. If no filters
are specified, all VRFs will be discovered by default.

Related concepts:
“Context-sensitive discovery” on page 8
If you need to discover devices such as SMS devices, MPLS Edge devices, or other
devices with virtual routers, you must run a context-sensitive discovery.
Context-sensitive discovery ensures correct representation of virtual routers.
Always check that your particular device type is supported for discovery.
Related tasks:
“Configuring a context-sensitive discovery” on page 102
If you have devices that you need to discover such as SMS devices, MPLS Edge
devices, or other devices with virtual routers, you must run a context-sensitive
discovery. Context-sensitive discovery ensures correct representation of virtual
routers. Always check that your particular device type is supported for discovery.
Related reference:
“DiscoConfig.cfg configuration file” on page 63
The DiscoConfig.cfg configuration file is used to have the Ping finder automatically
check the devices discovered by the File finder, and to enable a context-sensitive
discovery.
“TelnetStackPasswords.cfg configuration file” on page 78
The TelnetStackPasswords.cfg configuration file defines access credentials for Telnet
access to devices.
“DiscoTelnetHelperSchema.cfg configuration file” on page 71
The DiscoTelnetHelperSchema.cfg configuration file defines the operation of the
Telnet helper, which returns the results of a Telnet operation into a specified
device.

Task-specific discovery agents
There is a group of discovery agents that are task-specific.

Table 146. Task-specific discovery agents

Agent name Function

AlliedTelesynATSwitch The AlliedTelesynATSwitch agent discovers Ethernet switches
made by Allied Telesyn.
Note: Before enabling this agent, it is necessary to configure
SNMP access and the SNMP Helper.

330 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 146. Task-specific discovery agents (continued)

Agent name Function

AlteonSwitch The AlteonSwitch agent retrieves layer 2 connectivity
information from Alteon load balancers and Ethernet switch
modules.
Note: Configure SNMP access and the SNMP Helper before
enabling this agent.

ARPCache The ARPCache agent assists in populating the Helper Server
with IP to MAC address mappings in preparation for the
Ethernet-based discovery agents.

You must run this agent if you are running a layer 2 discovery.
This agent is optional if you are running a layer 3 discovery.
However, it can be more efficient to use the ARP Cache
discovery agent because in most network environments the
ARP helper can only run on one subnet at a time.
Note: Before enabling this agent, it is necessary to configure
SNMP access and the SNMP Helper.

ASM Determines whether ASMs for the following commercial server
and database products are running on a device:

v Oracle

v Apache

v Microsoft SQL Server

v Microsoft Exchange

v Microsoft Internet Information Server (IIS)

v Microsoft Active Directory

v IBM WebSphere®

v BEA WebLogic

v SAP

v Sybase ASE

v IBM Lotus® Notes/Domino Server

The ASM agent determines whether an application is running
by querying ASM-specific MIBs for the device. These MIBs are
installed by default when you install Network Manager.

The ASM agent can only retrieve this information from
network devices on which ASM is deployed. Typically, you
would deploy a ASM sub-agent on each commercial server and
database product which is running on a device and whose
performance you wish to monitor.

Appendix C. Discovery agents 331

Table 146. Task-specific discovery agents (continued)

Agent name Function

BGPPeerNextHop
Interface

All PE to CE interfaces are added to a members list and an
event on any of the interfaces in this members list causes the
system to generate a synthetic MPLS VPN SAE.

This agent, which is off by default, enables the generation of
MPLS VPN service-affected events (SAEs) based on interfaces
dependencies deeper in the core network. This agent calls the
AddLayer3VPNInterfaceDependency.stch stitcher.

This stitcher determines all PE to core provider router (P)
interfaces and P to PE interfaces involved in a VPN. These PE
-> P and P ->PE interfaces are added to a dependency list. An
event on any of the interfaces in this dependency list causes
the system to generate a synthetic MPLS VPN SAE. If an MPLS
VPN SAE has already been generated based on an event on
any of the interfaces in the members list, then any events in
interfaces in the dependency list will be added as related
events to that already generated MPLS VPN SAE.

CM Retrieves data from cable modems that are connected to a
cable modem termination system device.

Note: If activated, this agent retrieves a large amount of
information. Activating this agent may therefore place a heavy
load on memory. You should only activate this agent if specific
cable modem information is required beyond that provided by
other agents.

CMTS Discovers cable modem termination system devices. This agent
also discovers cable modem connectivity.

Note: If activated, this agent retrieves a large amount of
information. Activating this agent may therefore place a heavy
load on memory. You should only activate this agent if specific
cable modem information is required beyond that provided by
other agents.

ExtraDetails The ExtraDetails agent is a text-based agent that builds on the
basic SNMP information already retrieved by the Details
agent.This agent retrieves the following information:

v sysDescr

v sysLocation

v sysUpTime

v sysServices

v ifNumber

Note: Before enabling this agent, it is necessary to configure
SNMP access and the SNMP Helper.

HPNetworkTeaming The HPNetworkTeaming agent discovers secondary NICs on
HP Proliant Teamed network cards.If this agent is not enabled,
only the primary NIC on an HP Proliant device will be
discovered (as a local neighbour to the server) because only
this NIC resides in the ifTable. This agent will create all NICs
as local neighbours to the server.
Note: Before enabling this agent, it is necessary to configure
SNMP access and the SNMP Helper.

332 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 146. Task-specific discovery agents (continued)

Agent name Function

LoopbackDetails The LoopbackDetails agent is used to ensure that the
management interface of a device is used in the topology and
in subsequent monitoring as the main IP/name combination.
The agent retrieves information needed to identify the
management interfaces. This data is then used in the
NamingFromLoopbackDetails stitcher.
Note: Before enabling this agent, it is necessary to configure
SNMP access and the SNMP Helper.

MACFromArpCache The ArpCache agent must be enabled for this agent to run.

The MACFromArpCache agent is optionally activated in phase
3 of Discovery. It uses the ArpCache information retrieved by
the ArpCache agent to retrieve the MAC address of the device.
The agent is useful as it does not require SNMP access to the
device to obtain the MAC address.

NetScreenArpCache The NetScreenArpCache agent retrieves information from ARP
tables configured in Netscreen devices and processes the tables
to obtain the IP to MAC translation. The agent then sends the
ARP information to the ARP Helper. After further processing,
the ARP Helper sends the IP and MAC address mapping to the
ARPHelperTable.

The NetScreenArpCache agent uses the SNMPv2-SMI Standard
MIB.
Note: The ArpCache agent does not process the Netscreen
devices processed by the NetScreenArpCache agent. This is to
avoid conflict in the ipForwarding value as Netscreen is
recognized as a non-routing device by the ArpCache agent.

Appendix C. Discovery agents 333

Table 146. Task-specific discovery agents (continued)

Agent name Function

NMAPScan The NMAPScan agent is a Perl agent that runs the NMAP
scanner against devices discovered by Network Manager. By
default, the agent runs against devices that do not have SNMP
access, or devices that have SNMP access but return
sysObjectIds of devices from Apple, Compaq, IBM, Microsoft,
Sun, Network Harmoni, UC David, Net-SNMP, and HP.

The agent retrieves the following data:

v Operating System Fingerprint details

v TCP/UDP port and application information including port
number, name, state, type, and service

You must install NMAP version 4.85 or later on the same
server where the Network Manager core components are
installed. You must then edit the NMAPScan.pl file and specify
the path to the NMAP binary in the my $nmapBinary line, and
remove the comment from the beginning of the line. NMAP is
available at http://nmap.org.

Attention: Enabling the NMAPScan agent can extend the
duration of the discovery. NMAP has a large number of scan
options, refer to the NMAP documentation for more
information.

The following options are set by default for NMAP:

v -sS: Perform a TCP SYN scan

v -sV: Enable service version identification

v -PN: Do not ping each target (Network Manager already
uses the ping or file finder, or both)

v -O: Enable Operating System fingerprinting

v -oX: Enable XML output
Important: Do not change this value.

OSInfo Retrieves information about the operating system running on
discovered devices. This agent only runs against Cisco and
Juniper devices. The agent retrieves the following information:

v OSType

v OSVersion

v OSImage

SSM The SSM agent retrieves MIB information by SNMP from
devices running SSM agents. This agent retrieves information
such as the software installed on the device, running processes,
CPU utilization, storage devices on this entity, free disk space,
and so on.

The SSM agent can only retrieve this information from network
devices on which the SSM Agent is deployed. Typically, you
would deploy a SSM Agent on devices whose performance you
wish to monitor.

For more information on the SSM Agent, see the SSM
Application Guide.
Note: Before enabling this agent, it is necessary to configure
SNMP access and the SNMP Helper.

334 IBM Tivoli Network Manager IP Edition: Discovery Guide

http://nmap.org

Table 146. Task-specific discovery agents (continued)

Agent name Function

SSMOracle The SSM application and the Oracle monitoring package must
also be running.

The SSMOracle agent retrieves MIB information by SNMP from
devices running SSM agents. This agent retrieves information
such as the Oracle database names, fields, and database sizes.

The SSMOracle agent can only retrieve this information from
network devices on which the SSM Agent is deployed.
Typically, you would deploy a SSM Agent on devices whose
performance you wish to monitor.

For more information on the SSM Agent, see the SSM
Application Guide.
Note: Before enabling this agent, it is necessary to configure
SNMP access and the SNMP Helper.

TunnelAgent Template for a Perl agent to retrieve information about all
tunnels, including IPv6 over IPv4 tunnels, present in the
network. This agent works in conjunction with the
IPv6Interface agent.

Related reference:
“SnmpStackSecurityInfo.cfg configuration file” on page 75
The SnmpStackSecurityInfo.cfg configuration file defines the community strings,
versioning, and other properties used by any process that needs to interrogate
devices using SNMP, for example, the SNMP helper. Community strings can be
configured on a per-device or per-subnet basis, to allow the SNMP Helper to
retrieve MIB variables from devices.
“DiscoSnmpHelperSchema.cfg configuration file” on page 70
The DiscoSnmpHelperSchema.cfg configuration file defines the operation of the
SNMP Helper, which specifies the general rules of SNMP information retrieval.

Discovery agents for IPv6
Network Manager provides a Perl agent template that you can use as a base for
developing Perl agents to retrieve IPv6 interface data.

Table 147 describes the Perl agent templates.

Note: Rather than having agents with specific IPv6 capabilities, most of the
discovery agents have IPv6 capabilities; for example, the InetRouting agent
supports IPv6 routing entries but it also downloads IPv4 interfaces and route
information.

Table 147. IPv6 agent template

Agent name Function

IPv6Interface Template for a Perl agent to retrieve interface information from an IPv6
device. This agent is designed to work in an identical way to the
Interface agent. This agent template is located in the Perl agents directory
at the following location: $NCHOME/precision/disco/agents/perlAgents.

Appendix C. Discovery agents 335

Guidance for selecting agents
To discover device technologies (that is, those that use protocols other than IP) on
your network, you must ensure that the appropriate agents are active.

The following list provides the non-IP device protocols that are supported by
Network Manager. You can select the appropriate agents for these protocols.
v Frame Relay
v Private Network-Network Interface (PNNI)
v Cisco Discovery Protocol (CDP)
v Link Layer Discovery Protocol (LLDP)
v Hot Standby Routing Protocol (HSRP)
v Fibre Distributed Data Interface (FDDI)
v Asynchronous Transfer Mode (ATM)
v Integrated Local Management Interface (ILMI)
v Multiprotocol Label Switching (MPLS)

Which IP layer agents to use
The IP layer agents that you need to use depend on the devices on your network:
v If you do not want to have your IP routing tables accessed, you must only use

the IpBackupRoutes agent.
This agent is not used by default as it has the following drawbacks:
– It retrieves data from a table that is not dynamic. If the router has not been

refreshed, then the data retrieved by this agent may be spurious.
– The table is large and therefore takes a long time to download.

v If there are modern devices on the network, you must use the IpRoutingTable
agent and the IpForwardingTable agent.
These agents provide an accurate picture of IP layer connectivity and are
therefore used by default.

Which standard agents to use
The standard agents that you need to use depend on the information you require
and the devices on your network.
v The TraceRoute agent can be used if there is a firewall on the network, because

SNMP calls cannot always be made through firewalls. If you use the TraceRoute
agent, you must specify, as a discovery seed, the subnet node for the subnet on
the other side of the firewall.

v The ArpCache agent retrieves the physical address of a device, so is only
required (in conjunction with the Switch agents) when performing layer 2
discoveries.

v Frame Relay agents should be run in conjunction with the IP layer agents if you
need to add DLCI information to the interfaces of Frame Relay devices.

v Switch agents must be run for a layer 2 discovery.
v The device-specific and protocol-specific agents are only required to discover the

devices or protocols to which they relate.

336 IBM Tivoli Network Manager IP Edition: Discovery Guide

Which specialized agents to run
Several agents need to run only when you need to discover certain device types or
network technologies.

The specialized agents that you need to run depend on the devices and protocols
in your network:
v The Extreme agent can be used to extract layer 2 connectivity information, EDP

neighbors, and VLAN details from Extreme switches.
v The ExtremeESRP agent discovers Extreme Standby Routing Table information

from Extreme routing switches.
v The PnniForeSys agent discovers physical ATM connections between devices by

using the PNNI (Private Network-to-Network Interface) connectivity information
provided by the Marconi ASX series switches.

v The ILMIForeSys agent discovers physical ATM connections between devices by
using the ILMI (Interim Local Management Interface) connectivity information
provided by the Marconi ASX series switches.

v The CellPath90 agent discovers the ATM connection of a CellPath 90 WAN
(Wide Area Network) multiplexer.

v The Marconi3810 agent discovers the Ethernet connectivity of the ES-3810
switches running operating system version 4.x.x.

v The MariposaAtm agent discovers the ATM connectivity of the SE420 and SE440
IADs.

Note: The Ethernet switching and Frame Relay capabilities of these devices are
not currently certified.

v The ILMI agent discovers connectivity between ATM devices running ILMI that
support the ATM Forum's ATM MIB. The CiscoPVC agent retrieves PVC data
from Cisco devices.

v The AtmForumPnni agent discovers connectivity between devices running ATM
Forum PNNI that correctly support the ATM Forum's PNNI MIB.

v For Cisco devices, run the CiscoMPLSSnmp agent if you have the MPLS MIBs
enabled on a device, otherwise, use the CiscoMPLSTelnet agent.

v For Juniper devices, run the JuniperMPLSTelnet agent if you wish to discover
MPLS paths.

v For Juniper ERX devices (formerly Unisphere), the UnisphereMPLSTelnet agent
must be used to discover MPLS paths, as these devices are sufficiently different
to the Juniper "M" series routers that a different agent is required.

v The StandardMPLSTE agent discovers MPLS Traffic Engineered (TE) tunnels.
v The StandardIGMP agent discovers networks running the Internet Group

Management Protocol (IGMP).
v The StandardIPMRoute agent discovers IP multicasting networks.
v The StandardPIM agent discovers Protocol Independent Multicast (PIM) groups.
Related reference:
“Types of agents” on page 311
The agents supplied with Network Manager can be divided into categories
according to the type of data they retrieve or the technology they discover.

Appendix C. Discovery agents 337

Suggested agents for a layer 3 discovery
The recommended agents for a layer 3 discovery depends on your network.

When running a layer 3 discovery, the following agents should be run:
v Details and AssocAddress
v A combination of the following IP layer agents:

– IpRoutingTable
– IpBackupRoutes
– IpRoutingTable and IpForwardingTable

v HSRP
v VRRP
v TraceRoute (if firewalls are present)
v IPv4/6 InetRouting. If you have IPv6 in your network, consider running this

agent to discover the connectivity, particularly the IPv6 connectivity.

Tip: Some routers support layer 2 technologies. For example, when an ATM card
is located in a router chassis, layer 3 discovery agents, such as the IpRoutingTable
agent, only discover interfaces with an IP address. Therefore, to fully discover all
the interfaces on routers that support layer 2 technologies, you must run the
appropriate agents.
Related reference:
“Suggested agents for a layer 2 discovery”
The recommended agents for a layer 2 discovery depends on your network.

Suggested agents for a layer 2 discovery
The recommended agents for a layer 2 discovery depends on your network.

When running a layer 2 discovery, the following agents must be run:
v Details and AssocAddress
v A combination of the following IP layer agents:

– IpRoutingTable
– IpBackupRoutes
– IpRoutingTable and IpForwardingTable

v Switch
v FrameRelay
v ArpCache
v ATM
v FDDI
v HSRP
v VRRP
v MPLS
Related reference:
“Suggested agents for a layer 3 discovery”
The recommended agents for a layer 3 discovery depends on your network.

338 IBM Tivoli Network Manager IP Edition: Discovery Guide

Appendix D. Helper System

The helpers are specialized applications that retrieve information from the network
on demand.

Note: If the helpers and the Helper Server are running on a different host to the
DISCO process, and these hosts are behind a firewall, then specialized
configuration is required to ensure that the Helper System can communicate with
DISCO. For more information, see the IBM Tivoli Network Manager IP Edition
Administration Guide.

Helpers
Helpers retrieve information from devices and deposit the information in the
Helper Server for retrieval by the agents.

By default, there are six helpers, which are described in Table 148.

Table 148. Helpers available with Network Manager.
Note: $NCHOME is the environment variable that contains the path to the netcool directory.

Helper Executable Configuration file Description

ARP ncp_dh_arp $NCHOME/etc/precision/
DiscoARPHelperSchema.cfg

Performs IP
address to MAC
address resolution.

DNS ncp_dh_dns $NCHOME/etc/precision/
DiscoDNSHelperSchema.cfg

Performs IP
address to device
name resolution.

PING ncp_dh_ping $NCHOME/etc/precision/
DiscoPingHelperSchema.cfg

Either pings each
device in a subnet,
an individual IP
address or a
broadcast or
multicast address.
The result of the
ping could be used
to populate the
MIB of the device.

SNMP ncp_dh_snmp $NCHOME/etc/precision/
DiscoSnmpHelperSchema.cfg

$NCHOME/etc/precision/
SnmpStackSchema.cfg

$NCHOME/etc/precision/
SnmpStackSecurityInfo.cfg

Returns results of
an SNMP request
such as Get,
GetNext and
GetBulk.

TELNET ncp_dh_telnet $NCHOME/etc/precision/
DiscoTelnetHelperSchema.cfg

$NCHOME/etc/precision/
TelnetStackPasswords.cfg

$NCHOME/etc/precision/
TelnetStackSchema.cfg

Returns the results
of an OS command
against a specific
device using the
Telnet or SSH
protocol.

© Copyright IBM Corp. 2006, 2013 339

Table 148. Helpers available with Network Manager (continued).
Note: $NCHOME is the environment variable that contains the path to the netcool directory.

Helper Executable Configuration file Description

XMLRPC ncp_dh_xmlrpc $NCHOME/etc/precision/
DiscoXmlRpcHelperSchema.cfg

Enables Network
Manager to
communicate with
EMS collectors
using the XML-RPC
interface.

Helper System operation
At startup, the Helper Server loads up the Helper Server schema from the
DiscoHelperServerSchema.cfg configuration file and creates the appropriate helper
databases. The Helper Server also creates a Helper Manager for every helper
database.

The Helper Manager manages the way in which the helper handles requests from
the Helper Server to retrieve network device data. The Helper Manager specifies:
v The request timeout
v The time-to-live for the returned variables
v Whether multiple requests are to be processed in serial or parallel

When the Helper Manager detects a request for network data from the Helper
Server, it instructs the associated helper to retrieve the data from the network.

Dynamic timeouts
The Helper System uses dynamic timeouts to handle network requests.

As an example of the benefit of dynamic timeouts, if the SNMP helper is asked to
perform numerous SNMP Get requests, the helper might begin to slow down and
therefore exceed the timeout. A static timeout would cause the retrieval of data to
terminate (with data lost) even though the device is still responding with data.

To prevent this situation, the helpers incorporate a dynamic timeout system in
which they note SNMP Get requests and recalculate and update the timeout as the
SNMP daemons of the device begin to slow down.

340 IBM Tivoli Network Manager IP Edition: Discovery Guide

Appendix E. Discovery stitchers

Stitchers are processes that transfer, manipulate, and distribute data between
databases. The discovery stitchers also process the information collected by the
agents and using this information to create the network topology.

The discovery stitchers supplied with Network Manager are stored in the
following directories.
v Text-based discovery stitchers (text files with a .stch extension):

$NCHOME/precision/disco/stitchers/

v Precompiled discovery stitchers : $NCHOME/precision/platform/platform/lib/,
where platform is the operating system on which Network Manager is running;
for example, linux2x86, win32, solaris2, aix5, hpux11, or linux2s390.

For information on stitcher language, see the IBM Tivoli Network Manager IP Edition
Language Reference.

Main discovery stitchers
This topic lists all discovery stitchers.

The following table describes the discovery stitchers currently included with
Network Manager.

Note: This list is subject to change.

Table 149. List of Network Manager discovery stitchers

Stitcher Function

AddAEPhysicalIFContainment Adds physical interfaces to the chassis in the Link Aggregation
Group (LAG) containment structure of Juniper devices. This stitcher
is called by BuildContainment.stch.

AddBaseNATTags Updates all the private NAT addresses that have a private address
with their public address and adds a tag denoting the private
address.

AddBasicContainment Part of the mechanism for containment stitching. This stitcher inserts
containment information into the simple chassis.

AddCardContainment Adds card objects to the workingEntities.containment table.

AddContainedByAttribute Adds an ExtraInfo attribute called m_PhysicallyContainedBy. It is
analogous to the RFC2737 attribute entPhysicalContainedIn and
identifies the record that contains a particular record. This data is
used by Netcool® for Asset Management and the Cramer integration
and must be uncommented in the PostScratchProcessing stitcher
when using those applications.

AddEntityContainment Adds general entity information to the workingEntities.containment
table.

AddGlobalVlans Builds global Virtual Local Area Network (VLAN) objects using the
translations.vlans table.

AddIfStackContainment Adds interface stack objects to the workingEntities.containment
table.

© Copyright IBM Corp. 2006, 2013 341

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

AddJuniperEntityContainment Adds containment information for interface port entities to the device
records of Juniper devices

AddLayer3VPNInterfaceDependency This stitcher determines all PE to core provider router (P) interfaces
and P to PE interfaces involved in a VPN. These PE -> P and P ->PE
interfaces are added to a dependency list. An event on any of the
interfaces in this dependency list causes the system to generate a
synthetic MPLS VPN SAE. If an MPLS VPN SAE has already been
generated based on an event on any of the interfaces in the members
list, then any events in interfaces in the dependency list will be
added as related events to that already generated MPLS VPN SAE.

The BGP sessions set up between the PE speakers, and consequently,
the VPNs, depend on the PE -> P and P -> PE interfaces for a given
VPN and PE pair. The value of adding these interfaces to the VPN
dependency list is that it allows the P->PE and PE->P links to be
considered in Service Affected Event (SAE) calculations and thus
provide a notification that some set of VPNs on a PE are affected by
a link problem between PE and P routers.

The diagram below marks with an asterisk the interfaces that the
AddLayer3VPNInterfaceDependency stitcher adds as an MPLS VPN
SAE dependency. In this diagram, the following conventions are
used:

v [ce] is a customer-edge router

v [PE is a provider-edge router

v [P] is a provide core router

[ce]---[PE]*---*[P]---[P]---[P]*---*[PE]---[ce]
|*
|
|*

[PE]---[ce]

The results of the stitcher manifest themselves as the m_DependsOn
list in the following sample record which shows that an example
VPN, VPN_CONTAINER_ACME consists of a number of interfaces
in the VPN (m_Members list contains the PE->CE facing interfaces)
and subsequently depends on the PE->P/P->PE facing interfaces in
the m_DependsOn list.

{
m_Name=’VPN_CONTAINER_ACME’;
m_Creator=’STITCHER CREATED’;
m_Description=’Logical object for VPN ACME’;
m_EntityType=7;
m_ObjectId=’VIRTUAL_PRIVATE_NETWORK’;
m_HaveAccess=0;
m_IsActive=0;
m_ExtraInfo={

m_VPNName=’ACME’;
m_MPLSVPNType=’MPLS IP VPN MESH’;
m_Members=[’pe7-cr38.core.eu.test.lab[Vl2]’,

’pe7-cr38.core.eu.test.lab[Fa0/3/1]’,
’pe8-cr72.core.eu.test.lab[Fa5/0]’];

m_DependsOn=[’pe7-cr38.core.eu.test.lab[Se0/0/0:0.202]’,
’pe8-cr72.core.eu.test.lab[Fa0/0]’,
’p4-cr28.core.eu.test.lab[Se0/0/1:0.202]’,
’p4-cr28.core.eu.test.lab[Gi0/0]’];

};
}

342 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

AddLogicalToIpToBaseName Adds logical information to the translations.ipToBaseName table.

AddLoopbackTag Adds a tag to the ExtraInfo column of the topology database
indicating that an interface is a globally addressable loopback
interface.

AddNoConnectionsToLayer The final topology layer is constructed by merging the topology
information from the various layers. If there is a mismatch in
connectivity information provided by the different layers, information
from the more detailed layer takes precedence.

For example, the Network Layer (layer 3) provides information
indicating that a router interface is connected to another router
interface. However, information from the more detailed Data Link
Layer (layer 2) shows that there is actually a switch between the two
router interfaces.

The AddNoConnectionsToLayer is used in cases where it is necessary
to remove a connection at one layer but keep the connection at a
different layer.

AddOSPFAreaCollections Creates a logical collection for each OSPF area containing the
interfaces within that area.

AddSwitchRoutingLinks Adds switch routing data (that assists the RCA plug-in when
performing Root Cause Analysis) to the topology database.

AddTechnologyType Optional stitcher called by the PostScratchProcessing.stch stitcher.
This stitcher is commented out by default. If enabled, this stitcher
creates a technology type variable for each interface object. This
variable can then be used to create technology-based Network Views.

See the IBM Tivoli Network Manager IP Edition Network Visualization
Setup Guide for more information about network views.

The stitcher creates the technology type variable by adding an
m_Technology field to the ExtraInfo field within the
scratchTopology.entityByName table for each interface object. The
m_Technology field is a string, such as Ethernet, ATM. The stitcher
contains a large collection of default technology types; more can be
added by directly altering the stitcher.

The small processing load associated with activating this stitcher
might slow down your discovery slightly.

AddUnconnectedContainment Gives unconnected entities a default containment. Unconnected
entities do not have a parent, except for their main node or interface.

AddUnmanagedHub Infers the existence of an unmanaged hub if the discovery finds a
port that is connected to more than one item. This stitcher then
connects that port to an unmanaged hub, and also connects all the
other ports involved in the connection to the unmanaged hub. These
connections make the topology clearer.

AddVlanContainers Uses information in the workingEntities.finalEntity and
translations.vlans tables to add VLAN objects to the
workingEntities.containment table.

AddVTPCollections Augments the VTP domain entities with ports that are connected to
VTP domains.

AddVTPEdges Augments the VTP domain entities with ports that are connected to
VTP domains.

Appendix E. Discovery stitchers 343

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

AdjustedIPLayer Adjusts the IP layer to move the IP layer connectivity on logical
interfaces down to the physical interface for some routers.

AgentRetProcessing Processes data from the returns table of each table.

AgentRetToInstrumentationCiscoFrameRelay Populates the instrumentation.ciscoFrameRelay table with
information from the returns table of the appropriate agent.

AgentRetToInstrumentationFddi Populates the instrumentation.fddi table with information from the
returns table of the appropriate agent.

AgentRetToInstrumentationFrameRelay Populates the instrumentation.frameRelay table with information
from the returns table of the appropriate agent.

AgentRetToInstrumentationHSRP Populates the instrumentation.hsrp table with information from the
returns table of the appropriate agent.

AgentRetToInstrumentationIp Populates the instrumentation.ip table with information from the
returns table of the appropriate agent.

AgentRetToInstrumentationName Populates the instrumentation.name table with information from the
returns table of the appropriate agent.

AgentRetToInstrumentationPnniPgi Populates the instrumentation.pnniPeerGroup table with information
from the returns table of the appropriate agent.

AgentRetToInstrumentationSubnet Populates the instrumentation.subNet table with information from
the returns table of the appropriate agent.

AgentRetToInstrumentationVlan Populates the instrumentation.vlan table with information from the
returns table of the appropriate agent.

AgentStatus This stitcher sends events to the disco.events table about the status
of the discovery agents. These events indicate changes in the state of
the agent; for example, if it has started, has finished, or has crashed.
See also, FinderStatus, CreateStchTimeEvent, and
DiscoEventProcessing stitchers.

AnalyseTopology Analyses a connectivity database to find how many connections there
are on each interface.

AnalyseTopologySummary This stitcher uses the analysis summary information produced by the
AnalyseTopology stitcher to provide an optional deeper topology
analysis. This functionality is kept separate from the basic topology
analysis as it might affect performance or create topology issues on
some networks.

AnalyseTopology Analyses a connectivity database to find how many connections there
are on each interface.

AnalyseTopologySummary This stitcher uses the analysis summary information produced by the
AnalyseTopology stitcher to provide an optional deeper topology
analysis. This functionality is kept separate from the basic topology
analysis as it might affect performance or create topology issues on
some networks.

ApplyMainDisplayLabel Sets the display label for devices in the GUI based on the setting of
m_DisplayMode in the disco.config configuration file. Modifies the
entities in the workingEntities.finalEntity database table. Called by
the BuildFinalEntityTable.stch and RebuildFinalEntityTable.stch
stitchers.

344 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

ASMAgentRetProcessing Based on MIB variable data retrieved by the ASM stitcher, this
stitcher generates a list of ASM sub agents running on a given
device. Each ASM subagent running on a device corresponds to a
commercial server or database product running on that device. The
list of ASMs enables autopartitioning of devices within a network
based on the commercial server or database products running on
those devices.

ASAMIfStringLayer Uses the ASAM ifDescr format to deduce connectivity.

ASMProcessing Updates entities based on the services running on them.

ASRetProcessing Used in MPLS discoveries where devices in different customer VPNs
have identical IP addresses. This stitcher performs the processing
necessary to differentiate between these devices and correctly resolve
device connectivity. This stitcher is called by the AsAgent agent and
works with the ASMap.txt file in NCHOME/precision/etc.

AssocAddressRetProcessing Processes data in the AssocAddress.returns table, sending the device
details to the appropriate discovery agent if the device has not
already been discovered.

BGPLayer Builds the BGP layer created by BGP agent. In common with other
layer stitchers, this stitcher receives input from relevant agents. This
input consists of entity records containing local and remote neighbor
data fields. The stitcher uses these records to work out the local and
remote connections for each entity.

BuildBaseSubnetRegex Takes a given subnet and mask and produces a regular expression to
find IP addresses in that subnet.

BuildContainment Calls the following stitchers to add different types of objects to the
workingEntities.finalEntity table:

v AddBasicContainment stitcher, which adds device containment
information.

v AddCardContainment stitcher, which adds card containment
information.

v AddIfStackContainment stitcher, which adds interface stack
containment information.

v AddEntityContainment stitcher, which adds general containment
information.

v NATAddressSpaceContainment stitcher, which adds containment
information associated with NAT address spaces.

v AddVlanContainers stitcher, which adds VLAN containment
information.

You can comment out lines in this stitcher as appropriate in order to
exclude types of objects that are not needed.
Note: This stitcher also manages collector-discovered devices by
accepting data from the CollectorInventory agent.

BuildFinalEntity Builds the records for a single chassis. The BuildFinalEntity stitcher
merges data from multiple agents to create the complete definition of
an entity. This stitcher is called by the BuildFinalEntityTable
stitcher.

BuildFinalEntityTable Uses the entries in the translations.ipToBaseName table to populate
the workingEntities.finalEntity table.

Appendix E. Discovery stitchers 345

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

BuildInterfaceName Used to control the naming of interfaces. By default, this stitcher is
called by the BuildFinalEntity stitcher.

The default naming strategy for any device interface is as follows:

baseName[<card>[<port>]]

Alternatively Network Manager uses the following default naming
convention if the card and port are not valid:

baseName[0[<ifIndex>]]

You can use the BuildInterfaceName stitcher to change the naming
convention for an interface in one of the following ways:

v Specify that you want to use ifName or ifDescr to name the
interfaces rather than the ifIndex, card or port information. Using
this option, interfaces would have names like the following
example:

baseName[eth0/0]

In this example eth0 is the ifName of an interface.

To change the naming convention in this way, change the value of
m_UseIfName in the disco.config table.

v Modify the BuildInterfaceName stitcher directly to specify any
interface naming convention.

BuildLayers Activated in the final phase to implement the stitchers that build the
layer databases.

BuildMPLSContainers This stitcher calls the BuildVPNContainers and
BuildVRAndVRFContainers stitchers. It builds VPN, VR, and VRF
containers.

BuildNATTranslation Builds a global translation table for all NAT devices.

BuildVPNContainers Creates objects to represent the MPLS VPNs within the system.

BuildVRAndVRFContainers Creates virtual router (VR) and virtual routing and forwarding table
(VRF) objects within the system. These objects are useful for
displaying MPLS information.

BuildVSIContainers Creates Virtual Switch Instance (VSI) and Virtual Forwarding
Instance (VFI) entities. This stitcher also creates logical containment
of devices associated with VSIs, VFIs, and CE-PE links.

CabletronLayer Determines connectivity information based on Cabletron data
returned by the discovery agents.

CDPLayer Determines connectivity information based on the data returned by
the CDP agent.

CheckAndSendNATGatewaysToArpCache Sends the NAT gateways to the ArpCache agent.

CheckForMasterLink Looks for connections lower down the interface stack that take
precedence over connections higher up the stack.

CheckIfMgmtAddress Determines if a given IP address is a defined management address.

CheckIndirectResponse Handles indirect ICMP responses due to NAT.

CheckInterfaceStatus Checks the ifOperStatus data and updates the interfaces status
where the ifOperStatus is not 1.

CheckManagedProcesses Checks if the processes in disco.managedProcesses have been started,
and if they have not been started it attempts to start them.

346 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

CheckMultipleIPNoAccess Checks for devices with no access but multiple IP addresses. Creates
interface objects for these IP addresses and updates the entity
appropriately.

CheckValidVirtual Determines if the given IP address is a valid virtual IP address.

CiscoSerialInterfaceLayer Creates a new layer called CiscoSerialInterfaceLayer connecting Cisco
switches that are connected by serial interfaces. By default, the
stitcher removes any connections in the CiscoSerialInterfaceLayer that
are duplicated in the IPLayer database, to prevent wrong
connectivity. The function to remove mesh connections can be turned
on or off by editing a flag in the stitcher.

CiscoVSSContainment CiscoVSSContainment adds new containment entities, representing
the two physical chassis and their respective interfaces and objects, to
the workingEntities.finalEntity table.

CMTSLayer Uses the data downloaded by the CMTS agent to build the
connection information between cable modem termination systems
and the attached cable modem devices.

ContextAgentRetProcessing This stitcher is used for context-sensitive discovery data flow. It
merges the outputs of all the Context agents for each entity. It then
inserts the results of this merge into the AssocAddress.despatch table,
using the DetailsOrContextRetProcToAgent stitcher.

CollectorAddressTranslation This stitcher processes devices discovered using an EMS collector.
This stitcher performs the following activities:

v Ensures that any collector-discovered devices are identified as
being the same as the equivalent SNMP-discovered devices.

v Stores data on the collector associated with each device.

v Performs other administration tasks related to a collector discovery.

CollectorDetailsRetProcessing This stitcher processes devices discovered using an EMS collector. It
processes entries in the returns table of the CollectorDetails agent
and sends these entries to other collector discovery agents. The
collector discovery agents retrieve detailed device data from the EMS
collectors.

CollectorIPLayer This stitcher builds layer 2 connectivity for devices discovered using
an EMS collector based on the connection data supplied by the
CollectorLayer2 agent.

CollectorLagLayer Creates EMS-based Layer 2 connectivity from Alcatel Lucent 5620
Collector Link Aggregation (LAG) information.

CollectorSwitchLayer This stitcher builds layer 3 connectivity for devices discovered using
an EMS collector based on the connection data supplied by the
CollectorLayer3 agent.

CreateAndSendTopology Activates the stitchers that create the topology and send the final
Scratch Topology to MODEL.

CreateBGPAutonomousSystems Creates and names a BGP autonomous system (AS). Provides the
option to resolve the AS number to AS name, which enables display
of a customer or business-related name when visualizing the AS in a
topology map. Also retrieves data that indicates whether an AS is
single-homed. This stitcher is called by the PostScratchProcessing
stitcher following the creation of the scratch topology.

CreateBGPNetworksCollection Creates a topology database record, known as a BGP network, that
groups a collection of BGP autonomous systems. This stitcher is
called by the PostScratchProcessing stitcher following the creation of
the scratch topology.

Appendix E. Discovery stitchers 347

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

CreateBGPProtocolEndPoints Creates BGP protocol endpoints. A BGP protocol endpoint is a logical
interface that can be used by the BGP hosted service on a device. A
physical port can implement multiple BGP protocol endpoints. This
stitcher is called by the PostScratchProcessing stitcher following the
creation of the scratch topology.

CreateBGPServices Creates BGP hosted service entities. A hosted service is a service or
application running on a specific device. For example, a device might
host BGP and OSPF services. Each BGP hosted service entity
describes a BGP process on a router. This stitcher is called by the
PostScratchProcessing stitcher following the creation of the scratch
topology.

CreateBGPTopology Creates connections between BGP speakers. These connections are
presented in the Network Views, and correspond to working BGP
connections at the time of the discovery. This stitcher can also infer
BGP peer routers that Network Manager cannot access. These
inferred routers might correspond to BGP autonomous systems
outside of your company. This stitcher is called by the
PostScratchProcessing stitcher following the creation of the scratch
topology.

CreateIGMPGroups Creates multicast group entities and adds associated IGMP end
points as members. The Group entities populate the igmpGroup
NCIM table.

CreateIGMPProtocolEndPoints Creates Multicast IGMP Protocol End Point entities, which populate
the igmpEndPoint NCIM table.

CreateIGMPServices Creates Multicast IGMP Service entities, which populate the
igmpService NCIM table.

CreateImpactTopology An optional stitcher that can be used to make a copy of the Scratch
Topology before it is sent to the Topology Manager, ncp_model.

CreateIPMRouteGroups Creates the MDT, Group and Source entities that populate the
ipMRouteMDT, ipMRouteGroup, and ipMRouteSource NCIM tables.

CreateIPMRouteProtocolEndPoints Creates Multicast Routing Protocol Endpoint entities which populate
the ipMRouteEndPoint NCIM table.

CreateIPMRouteRoutes Manages the creation of upstream and downstream route entities for
the routes downloaded from multicast routers. It also aids MDT
resolution.

CreateIPMRouteTopology Populates the IPMRoute adjacency fields that populate the IPMRoute
topology in NCIM.

CreateIPMRouteServices Creates Multicast Routing Service entities which ultimately populate
the ipMRouteService NCIM table.

CreateMPLSTEResources Creates MPLS TE Resource entities.

CreateMPLSTEServices.stch Creates the MPLS Tunnel Engineering (TE) Service entities and
associates them with their host chassis entities.

CreateMPLSTETunnels.stch Creates the MPLS TE Tunnel entities and associates them with the
appropriate TE Service entity.

CreateMPLSTEProtocolEndPoints.stch Creates the MPLS TE Protocol End Points and associated then with
appropriate TE Service entity.

CreateMPLSTENetworkPipes.stch Creates Network Pipe fields in the Tunnel entities. The pipes consist
of IP Connection entities that represent the path of the Tunnel.

CreateMPLSTEPipeHop.stch Creates IP Connection entities for use with NetworkPipes.

348 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

CreateMPLSTETopology.stch Adds MPLS TE link fields to interface entities involved in TE Tunnel
paths.

CreateMXGroupCollection Creates collections based on the master IP address for a group of
routing engines. Called by the PostScratchProcessing stitcher.

CreateNetworkManagementCards This stitcher creates NetworkManagementCard objects.

CreateOSPFAreas Creates and names an OSPF area. This stitcher is called by the
PostScratchProcessing stitcher following the creation of the scratch
topology.

CreateOSPFNetworkLSAPseudoNodes Retrieves data associated with OSPF pseudonodes advertised by
designated routers and builds these pseudonodes in the topology.
This overcomes the problem of full meshing when representing OSPF
area in Network Views and enables connections within OSPF areas to
be visualized in a clear, uncluttered manner.

CreateOSPFPointToPointAdjacencies Retrieves data associated with point-to-point connections within an
OSPF area and creates these connections in the topology. These
connections are shown in Network Views. Only enabled connections
are shown.

CreateOSPFProtocolEndPoints Creates OSPF protocol endpoints. An OSPF protocol endpoint is a
logical interface that can be used by the OSPF hosted service on a
router. This stitcher also gathers data that indicates which OSPF area
an endpoint is in. A physical port can implement multiple OSPF
protocol endpoints. This stitcher is called by the
PostScratchProcessing stitcher following the creation of the scratch
topology.

CreateOSPFRoutingDomains Creates a topology database record, known as an OSPF routing
domain, that groups a collection of OSPF areas. This stitcher is called
by the PostScratchProcessing stitcher following the creation of the
scratch topology.

CreateOSPFServices Creates OSPF hosted service entities. A hosted service is a service or
application running on a specific device. For example, a device might
host BGP and OSPF services. Each OSPF hosted service entity
describes an OSPF process on a router, and also indicates whether
the router on which the OSPF service is running is an area border
router or an AS border router. This stitcher is called by the
PostScratchProcessing stitcher following the creation of the scratch
topology.

CreatePIMNetworksCollection Creates a collection entity to collect PIM enabled routers.

CreatePIMProtocolEndPoints Creates protocol endpoints for each PIM interface.

CreatePIMServices Creates a device level service object representing the state of the
hosted multicast service, and a link from the chassis to this service
object.

CreatePIMTopology Creates the PIM topology using PIM adjacency information rather
than m_RouterLinks.

CreateScratchTopology Creates the scratch topology.

CreateStchTimeEvent This stitcher sends events to the disco.events table about progress
within the data processing phase. For example, the stitcher generates
events to indicate that the discovery process has started building the
working entities table, and that the discovery process has started
building the containment table. See also, AgentStatus, FinderStatus,
and DiscoEventProcessing stitchers.

CreateTrunkConnections Modifies the containment model to take account of VLAN trunks.

Appendix E. Discovery stitchers 349

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

CreateVlanEntity This stitcher creates a single VLAN entity object by adding VLAN
data to the Scratch Topology.

CreateVRRPCollection Creates collections based on the Virtual Router Redundancy Protocol
(VRRP) virtual router ID and associated IP address. Called by the
PostScratchProcessing stitcher.

DetailsOrContextRetProcToAgent This stitcher is used as part of the context-sensitive discovery data
flow. It is equivalent to DetailsRetProcessing but handles
context-sensitive discovery. It processes entities from the
details.returns table, and sends the details to the despatch table of
the relevant Context agent.

DetailsRetProcessing Processes entities from the details.returns table, and sends the
details to the AssocAddress.despatch table.

DetectionFilter Determines whether a given device passes the detection filter and is
to be discovered based on the detectionFilter defined in the scope
database.

By default, the discovery filters do not filter out the Network
Manager server, because this server usually also serves as the polling
station for root cause analysis. In order for root cause analysis to
work correctly, the polling station, and hence the Network Manager
server, must be part of the topology.

If you need to filter out the Network Manager server using the
detectionFilter, modify the DetectionFilter stitcher and remove the
sections of code indicated by comments that prevent the Network
Manager server from being filtered.

DiscoEventProcessing This stitcher responds to an insert into the disco.events table and
creates and sends the appropriate discovery event to the probe for
Tivoli Netcool/OMNIbus, nco_p_ncpmonitor process, which then
forwards the event to the ObjectServer. You can control whether
discovery events are generated by changing the value of the
m_CreateStchrEvents field in the disco.config table. See also,
AgentStatus, FinderStatus, and CreateStchTimeEvent stitchers.

DiscoShutdown Activated when DISCO is shut down. Calls the
RefreshDiscoveryTables stitcher.

ExampleContainment1 An example stitcher that could be modified to configure the
containment model.

ExampleContainment2 An example stitcher that could be modified to configure the
containment model.

FddiLayer Deduces the FDDI layer topology.

Feedback Sends device details back to the Ping finder to seed the discovery
again.

FinalPhase Activated in the final phase to implement the final stitchers.

FindAddressSpace Identifies the address space of an IP address.

FinderStatus This stitcher sends events to the disco.events table about the status
of the finders. For each finder, the stitcher sends an event to indicate
changes in the state of the finder; for example, if the finder has
started, has finished, or has failed. See also, AgentStatus,
CreateStchTimeEvent, and DiscoEventProcessing stitchers.

FindGatewayInterfaces Identifies the gateway interface on NAT translation devices.

350 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

FindPhysIpForVirtIp Used in resolution of HSRP issues. Finds the physical IP address
corresponding to a virtual HSRP address.

FnderProcToDetailsDesp Processes entries in the finders.processing table, and sends the
details to one of the following agents:

v Details agent, if the device was discovered directly in the network.

v CollectorDetails agent, if the record is a device discovered using an
EMS collector.

FnderRediscoveryToCollectorFinder Sends IP addresses or address ranges from the finders.rediscovery
table to the Collectors. If the Collector server address or one of the
devices that it collects matches the address or address range then the
Collector processes it again.

FnderRediscoveryToPingFinder Sends data from the finders.rediscovery table to the Ping finder.

FnderRetProcessing Processes entities in the finders.returns table. Checks whether the
device is in scope and moves this entry to the finders.processing or
finders.pending table, depending on whether the discovery is in
blackout state.

FullDiscovery Determines whether a full discovery is to be run.

GetEntityNameByBase For a given base name and interface index (or interface ID), this
stitcher resolves the associated entity name.

GetEntityNameByIp For a given address and optional address space, this stitcher resolves
the associated entity name. An optional base name can also be
specified to restrict the search.

GetBaseNameByIp Returns the base name associated with the supplied IP address, or ""
if none is found. If there are multiple matches then the first is used.

HandleIPMRouteDownstream Processes the IPMRoute downstream routing data for the current
device. It creates downstream route entities which populate the
ipMRouteDownstream NCIM table. It also tracks end points required
by the route, which are created later, and which MDT to associate the
route with.

HandleIPMRouteUpstream Processes the IPMRoute upstream routing data for the current device.
It creates upstream route entities which populate the
ipMRouteUpstream NCIM table. It also tracks end points required by
the route, which are created later, and which MDT uses to associate
the route with.

HubFdbToConnections A precompiled stitcher that processes all of the connections for the
Ethernet hubs. It also requires the connectivity information from the
Ethernet switch discovery.

IlmiLayer Creates the ILMI (Interim Local Management Interface) topology
connections based upon ATM ILMI information.

InitiateNATGatewayDiscovery Seeds the Ping finder with the NAT gateway addresses.

Appendix E. Discovery stitchers 351

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

InstantiationFilter Determines whether a given entity is to be instantiated (that is, sent
to MODEL), based on the instantiateFilter defined in the scope
database.

By default, the discovery filters do not filter out the Network
Manager server. This is because this server typically also serves as
the polling station for root cause analysis. In order for root cause
analysis to work correctly, the polling station, and hence the Network
Manager server, must be part of the topology.

If you need to filter out the Network Manager server using the
instantiateFilter modify the InstantiationFilter stitcher and remove
the sections of code indicated by comments that prevent the Network
Manager server from being filtered.

IPLayer Creates the IP layer topology connections.

IpToBaseName Populates the translations.ipToBaseName table with information
from the AssocAddress agent.

IsForcedRediscovery This stitcher is used to determine if a finder insert is part of a forced
rediscovery. Forced rediscovery contrasts with reactive rediscovery,
the mode that the Discovery Engine, ncp_disco, adopts after
completion of a discovery. In this mode a device is typically only
rediscovered if it is new or if the finder insert references a trap, thus
suggesting that the entity has been modified.

Forced rediscoveries are started using the Discovery Configuration
GUI.

IsInMPLSScope Determines if a given IP address is in the scope of devices considered
to be valid CE devices connected to an inaccessible third-party MPLS
PE device.

IsInScope Used by other stitchers to check that an entity is within the scope of
the discovery (that is, within the scope defined in the scope.zones
table).

LLDPLayer Determines connectivity information of remote neighbors based on
data returned by the LLDP agent.
Note:

If connectivity is incorrectly displayed for a devices, then this might
mean that the LLDP MIB on the network device is incorrectly
populated. In some cases the relevant MIB data is incorrectly
populated with device model number instead of a unique identifier.
In this case the LLDP stitcher is unable to calculate LLDP
connectivity correctly.

To verify that this is the problem, for each of the devices that are not
connected correctly you must examine the values of the
LLDPChassisId field in the LLDP agent's LLDP.returns table. If you
determine that the LLDPChassisId field values are not unique, then
edit the LLDPLayer stitcher and set the processing method to a value
of 2, by changing the following line in the stitcher:

int processingMethod = 2;

MergeLayers Merges the layer topologies.

ModifyIPContainment Modifies the containment of IP interfaces on non-IP forwarding
devices so that they are not upwardly connected. This modification is
required to trace root cause.

352 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

MPLSAddPathnames Updates the MPLS interface records with information about path
membership.

MPLSAddVPNNames Determines what paths belong to which VPNs, and updates the
MPLS interface records with the information about the VPN/Path
membership.

MPLSCE Tries to resolve CE to PE connectivity for VRF interfaces on a PE
where the connecting CE has not been identified. It uses layer 3
information to try to find the correct connectivity.

MPLSPathDiscovery Identifies labels switched paths (LSPs) between provider edge (PE)
routers across an MPLS core. Starts path traces from the PE devices.
The entry point stitcher sets up the path trace database, and begins a
path trace for each possible path, calling other stitchers to update the
records with path and VPN information.

MPLSProcessing Determines which mode of MPLS discovery to perform based on the
value of the field m_RTBasedVPNs in the disco.config table.

v If m_RTBasedVPNs equals 1, then route target-based MPLS post-layer
processing is performed. The MPLSProcessing stitcher calls the
RTBasedVPNDiscovery stitcher to perform this processing. The
MPLS discovery results in the ability to display an edge view only.

v If m_RTBasedVPNs equals 0, then label switched path (LSP)-based
post-layer processing is performed. The MPLSProcessing stitcher
calls the MPLSPathDiscovery stitcher to perform this processing.
The MPLS discovery results in the ability to display an edge view
and a core view.

This stitcher also performs the background processing required to
generate service-affected events.

MPLStackProcessing Ensures that any interfaces that are situated below a VPN supporting
interface in the interface stack are marked as being part of the VPNs
which flow through the higher interfaces.

NameResolution Finds entities where the name has not been resolved and attempts to
resolve the entity name based on the resolved names of the other
interfaces of the device.

NamingFromLoopbackDetails Provided there is a LoopBack agent running, this stitcher updates the
names in the translations.ipToBaseName table. The management IP
address of the device used by the poll policies is set to one of the
loopback addresses, if Network Manager has confirmed that it has
SNMP access.

NamingViaManagementInterface Looks for management IP addresses from the
translations.ipToBaseName and ensures the base address and name
of an entity is that of the management server.

NATAddressSpaceContainers Optional stitcher that builds NAT container objects holding devices
within a particular address space and creates inserts into the
workingEntities.finalEntity table for these NAT container objects.
Also builds relevant entries into the workingEntities.containment
table.

NATAgentRetProcessing Processes the output from the NAT gateway agents.

NATFnderRetProcessing Performs processing of NAT devices.

Appendix E. Discovery stitchers 353

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

NATGatewayRetProcessing Used in discoveries involving NAT gateways where one or more of
the management interfaces of the NAT gateway device is in private
address space. This stitcher performs the processing necessary to
determine whether each management interface is in public or private
address space. This stitcher is called by the NATGatewayAgent agent
and works with the NATGateways.txt file in NCHOME/precision/etc.

NATIpCheck Resolves an issue where a NAT gateway adds all of its translated IP
addresses to its own IP table.

NATTimer Triggers rediscovery of NAT gateways.

NortelPassportLayer Resolves the NortelPassport connectivity discovered by the
NortelPassport agent.

OSPFLayer Creates a topology of the OSPF routing within the network. This
OSPF routing information is used by the DetermineOSPFDomains
stitcher in order to tag devices and interfaces with OSPF domain
information.

ParseASAMIfString Parses the ASAM Interface description data into its component parts.
Called from the ASAMIfStringLayer stitcher.

ParseZyxelIfString Parses the ZYXEL Interface description data into its component parts.
Called from the ZyxelIfStringLayer stitcher.

PeerBasedPWDiscovery Used in discovery of enhanced Layer 2 VPNs on an MPLS core
network. This stitcher identifies MPLS pseudowire connections
retrieved by the Cisco MPLS agents and adds information about
these connections to the relevant network entities for viewing in
Topoviz. The information is stored as a pseudowire VPN and
provides information about the two provider edge (PE) router ends
of the pseudowire.

PIMLayer Creates PIM Topology table based on remote neighbor data from PIM
supporting agents. The topology data is used to populate the
m_PIMAdjacency data, which in turn is used to populate the PIM
Topology in NCIM

PingFinderScopeRefresh Tells the Ping Finder to refresh its scope. This stitcher is activated by
the Discovery Configuration GUI when you refresh the scope,
ensuring that the Ping finder has an up-to-date scope.

PnniLayer Creates the PNNI topology connections provided the connections at
both ends have been discovered.

354 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

PostLayerProcessing A holder for all the functionality that is required following the
creation of the layers. Calls the following stitchers:

v AddGlobalVlans

v AddSwitchRoutingLinks

v AddUnconnectedContainment

v BuildMPLSContainers

v BuildVRAndVRFContainers

v BuildVPNContainers

v CreateTrunkConnections

v CreateVlanEntity

v MPLSAddVPNNames

v MPLSPathDiscovery

v MPLSInterfaceStackTrace

v MPLSFindConnectionInStack

v MPLSFindInterfaceInStack

v MPLSAddPathNames

v PVCPathMemberships

v PVCTracePath

v PVCProcessingRecord

v PVCTraceAway

v PVCTraceCrossConnected

v PVCNamePath

v PVCProcessedRecord

v ProcessSwitchModules

Appendix E. Discovery stitchers 355

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

PostScratchProcessing A holder for functionality to occur following the creation of the
scratch topology. Calls the following stitchers:

v CreateNetworkManagementCards

v InstantiationFilter: This stitcher is run as many times as necessary
in order to check whether a given entity must be sent to MODEL.

v SendTopologyToModel

v AddTechnologyType

This stitcher also calls the following stitchers that configure
BGP-related information within the topology:

v CreateBGPServices

v CreateBGPProtocolEndPoints

v CreateBGPTopology

v CreateBGPAutonomousSystems

v CreateBGPNetworksCollection

This stitcher also calls the following stitchers that configure
OSPF-related information within the topology:

v CreateOSPFServices

v SetOSPFServiceDesignatedStatus

v CreateOSPFProtocolEndPoints

v CreateOSPFNetworkLSAPseudoNodes

v CreateOSPFPointToPointAdjacencies

v CreateOSPFAreas

v CreateOSPFRoutingDomains

PreProcessIGMPEndPointData Creates and populates a temporary table consisting of end-point
information for each IGMP-enabled interface and known groups. It
also tracks the Multicast groups for which there is IGMP data. This
data is used by other IGMP stitchers to create end point and group
entities.

PresetLayer Can be used to "preset" undiscoverable connections, if required. This
stitcher is not used by default.

This stitcher contains advanced configuration settings. Any changes
must be made by certified personnel only.

ProcessQinQData Processes QinQ data associated with interfaces and builds
appropriate containment.

ProcessSwitchModules Identifies which switch modules have their own IP addresses.

ProcRemoteConns Takes a record containing a remote neighbor and processes remote
connections if the agent that discovered it supports indirect
connections.

ProfilingEndFinal

ProfilingPhase1

ProfilingPhase2

ProfilingPhase3

ProfilingStartFinal

These stitchers populate the disco.profilingData table, providing
data on discovery duration, memory usage, and a broad overview of
the results of the discovery. This information is used in the
estimation of scaling, and provides you with an overview of
discovery performance.

356 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

PruneSwitchConnections This stitcher can be used as a way of improving switch connectivity
in cases where the switches do not provide full connectivity
information. This stitcher is not enabled by default, and must be
enabled only on advice from IBM Support.

PVCNamePath Adds the name of a PVC path to the internal atmPVCs.memberships
database table.

PVCPathMemberships Run automatically by CreateScratchTopology.stch during the
discovery process. Uses the connectivity information from the Scratch
Topology and the PVC information retrieved by the CiscoPVC agent
to trace the PVCs across the network.

PVCProcessedRecord Updates the atmPVCs database to indicate which record is currently
being processed.

PVCProcessingRecord Updates the atmPVCs database to indicate which record is currently
being processed.

PVCTraceAway Performs PVC tracing.

PVCTraceCrossConnected Performs PVC tracing.

PVCTracePath Performs PVC tracing for a given interface using the other PVC
tracing stitchers to trace all the paths through the entire ATM section
of the network.

PVCTraceTowards Performs PVC tracing.

RebuildFinalEntityTable This stitcher is very similar to the BuildFinalEntityTable. It also uses
the entries in the translations.ipToBaseName table to populate the
workingEntities.finalEntity table. The difference is that this
stitcher is used in rediscovery mode rather than full discovery mode.

RecreateAndSendTopology This stitcher is very similar to the CreateAndSendTopology.stch. It
also activates the stitchers that create the topology and sends the
final Scratch Topology to MODEL. The difference is that this stitcher
is used in rediscovery mode rather than full discovery mode.

RecreateScratchTopology This stitcher is similar to CreateScratchTopology.stch. The difference
is that this stitcher is used in rediscovery mode rather than full
discovery mode.

ReDoIpToBaseName Refreshes the translations.ipToBaseName table.

RefreshDiscoveryTables Refreshes the discovery database tables.

RefreshLayerDatabase Refreshes a given layer topology database.

RefreshMPLSTEScope Refreshes the scope of the StandardMPLSTE agent.

RefreshMulticastScope Refreshes the scope of the StandardPIM agent.

RefreshSubnets Refreshes a given subnet database.

RemoveDeviceFromTopology Removes a device from the topology. The first argument of this
stitcher must be the base name of the device to be removed.

RemoveInferredCEDuplicates When the existence of a CE router is inferred, this stitcher removes
potential duplicate devices from the topology.

RemoveOutOfBandConnectivity Removes connectivity for out of band devices from the
fullTopology.entityByNeighbor table.

RemoveOutOfBandRouterLinks Removes router link connectivity for out of band devices from the
scratchTopology.entityByName table.

RemoveWrongConnectionsToTA838 Removes wrong connections from Cisco 7609 and Cisco 3400 to
Adtran TA838 devices.

Appendix E. Discovery stitchers 357

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

ResetNATMainNodes Resets the IP of devices whose addresses have been translated by
NAT from the private IP we use to resolve connectivity back to the
public IP for monitoring. This allows the devices to be connected and
visualized correctly and also remain accessible for monitoring
purposes.

ResolveHSRPIssues Checks for entities that have been discovered through their virtual
Hot Standby Routing Protocol (HSRP) address. In that situation, the
stitcher updates the discovery agent returns tables and the
translations.ipToBaseName to show the correct physical interface.

ResolveVRRPAssocAddresses Resolves issues caused by VRRP addresses. In such a situation, the
stitcher updates the discovery agent returns tables and the
translations.ipToBaseName to show the correct physical interface.

RestartDiscoProcess Calls the restart_disco_process.pl script which stops the currently
running discovery process and starts a new instance of it. It takes a
single argument and a new full discovery is initiated by the newly
started discovery process if the value is set to 1. If set to 0, then a full
discovery is not initiated.

Restitcher Re-stitches the topology together.

RTBasedVPNDiscovery Discovers MPLS VPNs based on route target usage. This results in an
edge view only which shows the MPLS core network with provider
edge (PE) routers for VPNs and VRFs within the scope of the
discovery. This view does not show the provider (P) routers within
the MPLS core network and associated LSPs (label switched paths)
that link these P routers. For each PE router discovered, Network
Manager holds information on the route targets imported into and
exported from that PE router. This enables you to identify which
VPNs use which PE routers.

RTBasedVPNResolution Uses the VRF data pre-processed by the RTBasedVPDiscovery
stitcher to resolve VPNs based on Route Target import and export.

ScopeRefresh Informs the finders and agents that require scope information when
the scope table has changed.

SendToCollectors Sends the supplied seed to the Collector finder for rediscover.

SendTopologyToModel Sends the stitched topology to MODEL.

SerialLinkLayer Determines connections from the data returned by the SerialLink
agent.

SetOSPFServiceDesignatedStatus Specifies whether or not the router running an OSPF service is a
designated router or a backup router.

SONMPLayer Determines connections from the data returned by the SONMP agent.

SubnetConnections Creates subnet entities and inserts into each of the interfaces
belonging to the subnet. At layer 3 level the interfaces within a
subnet are all considered to be connected, so any connections not
already discovered are added to the IP layer database.

SubnetToIPLayer Adds default layer-three containment and/or connectivity.

SRPLayer Builds the SRP layer to hold the containment information discovered
by the SRP agent. In common with other layer stitchers, this stitcher
receives input from relevant agents. This input consists of entity
records containing local and remote neighbor data fields. The stitcher
uses these records to work out the local and remote connections for
each entity.

358 IBM Tivoli Network Manager IP Edition: Discovery Guide

Table 149. List of Network Manager discovery stitchers (continued)

Stitcher Function

SwitchFdbToConnections Copies entries from the Switch agent returns tables to the
connections table.

SwitchStpMltProcessing Adds connections for all links in a multi-link trunk to an
entityByNeighbor table.

SwitchStpToConnections Builds a new layer based on the SwitchStp connectivity. Processes the
data from the STP agent to create correctly named local and remote
entity connection records in the stpTopology database.

In common with other layer stitchers, this stitcher receives input
from relevant agents. This input consists of entity records containing
local and remote neighbor data fields. The stitcher uses these records
to work out the local and remote connections for each entity.

SysNameNaming Causes the system to name devices using the SNMP sysName where
the data is valid. This is an optional stitcher that is off by default.

TagManagedEntities Adds a tag to each of the interfaces of a main node indicating
whether that interface should be monitored or not. This tag is in the
m_ExtraInfo field and is called m_IsManaged. The tag can take the
following values:

v 0 - the interface is managed. This is the default.

v 1 - the interface is unmanaged. This can be altered using the GUI.

v 2 - the interface is unmanaged by the ncp_disco process. This
cannot be altered using the GUI.

v 3 - the interface is outside the discovery scope and is not to be
polled.

The m_IsManaged values for all interfaces in a main node are
concatenated and stored in the m_ExtraInfo field for the main node,
within m_UnmanagedInterfaces, using the format: [<ifIndex1>,
<IfIndex2>, <IfIndexN>], where the ifIndices are the ifIndices
of the interfaces you do not want the system to monitor. By default,
the stitcher sets m_IsManaged to 0 for certain predefined types of
interface, such as virtual interfaces. You can specify other interface
types that you do not want the system to monitor by adding to a
where clause within the stitcher.

TagManagementInterfaces Tags the interface that has the IP address used as the main access IP
address for a given entity. This stitcher is used in root cause analysis.

TraceRouteConnectivity Updates the IPLayer.entityByNeighbor table with connectivity
information retrieved from the TraceRoute agent returns data.

VRFBasedVPNResolution Uses the VRF data pre-processed by the RTBasedVPDiscovery
stitcher to resolve VPNs based on VRF names.

ZyxelIfStringLayer Uses the ZYXEL ifDescr format to deduce connectivity.

Appendix E. Discovery stitchers 359

Related concepts:
“Filters” on page 5
Use prediscovery filters to increase the efficiency of discovery and post-discovery
filters to prevent instantiation of devices.
“Process flow for creating discovery events” on page 164
Discovery events are created during the discovery process showing the progress of
agents, stitchers, and finders. These events are sent to and stored in Tivoli
Netcool/OMNIbus and can be viewed using the Web GUI.
Related tasks:
“Setting discovery filters” on page 28
Use filters to filter out devices either before discovery or after discovery. You can
filter out devices based on a variety of criteria, including location, technology, and
manufacturer. Filters provide additional restrictions to those defined in the scope
zones.
“Scoping discovery” on page 17
To scope the discovery, define the zones of the network (that is, subnet ranges) that
you want to include in the discovery, and the zones that you want to exclude.

360 IBM Tivoli Network Manager IP Edition: Discovery Guide

Appendix F. Types of traps

Traps are administrative messages sent from network devices such as routers that
indicate that the device or its connections have started or stopped.

The Trap finder discovers devices by listening for SNMP traps and extracting IP
addresses from those traps. The different types of traps are described in Table 150.

Table 150. Types of traps

Number Name Description

0

coldStart trap A coldStart trap signifies that the sending protocol
entity is reinitializing itself such that the agent's
configuration or the protocol entity implementation
may be altered.

1

warmStart trap A warmStart trap signifies that the sending protocol
entity is reinitializing itself such that neither the agent
configuration nor the protocol entity implementation
is altered.

2
linkDown trap A linkDown trap is generated by the failure of a

recognized communication link.

3
linkUp trap A linkUp trap is generated when a communication

link that was formerly down comes alive.

4
authenticationFailure
trap

An authenticationFailure trap is generated by a
protocol message that has not been authenticated by
the recipient, for example, an incorrect password.

5

egpNeighborloss trap An egpNeighborLoss trap signifies that an Exterior
Gateway Protocol (EGP) neighbor for which the
sending protocol entity was an EGP peer has been
marked down and the peer relationship is no longer
valid.

6
enterprise-specific trap An enterprise-specific trap signifies that the sending

protocol entity recognizes that an enterprise-specific
event has occurred.

© Copyright IBM Corp. 2006, 2013 361

362 IBM Tivoli Network Manager IP Edition: Discovery Guide

Appendix G. Network Manager glossary

Use this information to understand terminology relevant to the Network Manager
product.

The following list provides explanations for Network Manager terminology.

AOC files
Files used by the Active Object Class manager, ncp_class to classify
network devices following a discovery. Device classification is defined in
AOC files by using a set of filters on the object ID and other device MIB
parameters.

active object class (AOC)
An element in the predefined hierarchical topology of network devices
used by the Active Object Class manager, ncp_class, to classify discovered
devices following a discovery.

agent See, discovery agent.

class hierarchy
Predefined hierarchical topology of network devices used by the Active
Object Class manager, ncp_class, to classify discovered devices following a
discovery.

configuration files
Each Network Manager process has one or more configuration files used to
control process behaviour by setting values in the process databases.
Configuration files can also be made domain-specific.

discovery agent
Piece of code that runs during a discovery and retrieves detailed
information from discovered devices.

Discovery Configuration GUI
GUI used to configure discovery parameters.

Discovery engine (ncp_disco)
Network Manager process that performs network discovery.

discovery phase
A network discovery is divided into four phases: Interrogating devices,
Resolving addresses, Downloading connections, and Correlating
connectivity.

discovery seed
One or more devices from which the discovery starts.

discovery scope
The boundaries of a discovery, expressed as one or more subnets and
netmasks.

Discovery Status GUI
GUI used to launch and monitor a running discovery.

discovery stitcher
Piece of code used during the discovery process. There are various
discovery stitchers, and they can be grouped into two types: data collection
stitchers, which transfer data between databases during the data collection

© Copyright IBM Corp. 2006, 2013 363

phases of a discovery, and data processing stitchers, which build the
network topology during the data processing phase.

domain
See, network domain.

entity A topology database concept. All devices and device components
discovered by Network Manager are entities. Also device collections such
as VPNs and VLANs, as well as pieces of topology that form a complex
connection, are entities.

event enrichment
The process of adding topology information to the event.

Event Gateway (ncp_g_event)
Network Manager process that performs event enrichment.

Event Gateway stitcher
Stitchers that perform topology lookup as part of the event enrichment
process.

failover
In your Network Manager environment, a failover architecture can be used
to configure your system for high availability, minimizing the impact of
computer or network failure.

Failover plug-in
Receives Network Manager health check events from the Event Gateway
and passes these events to the Virtual Domain process, which decides
whether or not to initiate failover based on the event.

Fault Finding View
Composite GUI view consisting of an Active Event List (AEL) portlet
above and a Network Hop View portlet below. Use the Fault Finding View
to monitor network events.

full discovery
A discovery run with a large scope, intended to discover all of the network
devices that you want to manage. Full discoveries are usually just called
discoveries, unless they are being contrasted with partial discoveries. See
also, partial discovery.

message broker
Component that manages communication between Network Manager
processes. The message broker used byNetwork Manager is called Really
Small Message Broker. To ensure correct operation of Network Manager,
Really Small Message Broker must be running at all times.

NCIM database
Relational database that stores topology data, as well as administrative
data such as data associated with poll policies and definitions, and
performance data from devices.

ncp_disco
See, Discovery engine.

ncp_g_event
See, Event Gateway.

ncp_model
See, Topology manager.

364 IBM Tivoli Network Manager IP Edition: Discovery Guide

ncp_poller
See, Polling engine.

network domain
A collection of network entities to be discovered and managed. A single
Network Manager installation can manage multiple network domains.

Network Health View
Composite GUI view consisting of a Network Views portlet above and an
Active Event List (AEL) portlet below. Use the Network Health View to
display events on network devices.

Network Hop View
Network visualization GUI. Use the Network Hop View to search the
network for a specific device and display a specified network device. You
can also use the Network Hop View as a starting point for network
troubleshooting. Formerly known as the Hop View.

Network Polling GUI
Administrator GUI. Enables definition of poll policies and poll definitions.

Network Views
Network visualization GUI that shows hierarchically organized views of a
discovered network. Use the Network Views to view the results of a
discovery and to troubleshoot network problems.

OQL databases
Network Manager processes store configuration, management and
operational information in OQL databases.

OQL language
Version of the Structured Query Language (SQL) that has been designed
for use in Network Manager. Network Manager processes create and
interact with their databases using OQL.

partial discovery
A subsequent rediscovery of a section of the previously discovered
network. The section of the network is usually defined using a discovery
scope consisting of either an address range, a single device, or a group of
devices. A partial discovery relies on the results of the last full discovery,
and can only be run if the Discovery engine, ncp_disco, has not been
stopped since the last full discovery. See also, full discovery.

Path Views
Network visualization GUI that displays devices and links that make up a
network path between two selected devices. Create new path views or
change existing path views to help network operators visualize network
paths.

performance data
Performance data can be gathered using performance reports. These
reports allow you to view any historical performance data that has been
collected by the monitoring system for diagnostic purposes.

Polling engine (ncp_poller)
Network Manager process that polls target devices and interfaces. The
Polling engine also collects performance data from polled devices.

poll definition
Defines how to poll a network device or interface and further filter the
target devices or interfaces.

Appendix G. Network Manager glossary 365

poll policy
Defines which devices to poll. Also defines other attributes of a poll such
as poll frequency.

Probe for Tivoli Netcool/OMNIbus (nco_p_ncpmonitor)
Acquires and processes the events that are generated by Network Manager
polls and processes, and forwards these events to the ObjectServer.

RCA plug-in
Based on data in the event and based on the discovered topology, attempts
to identify events that are caused by or cause other events using rules
coded in RCA stitchers.

RCA stitcher
Stitchers that process a trigger event as it passes through the RCA plug-in.

root-cause analysis (RCA)
The process of determining the root cause of one or more device alerts.

SNMP MIB Browser
GUI that retrieves MIB variable information from network devices to
support diagnosis of network problems.

SNMP MIB Grapher
GUI that displays a real-time graph of MIB variables for a device and usse
the graph for fault analysis and resolution of network problems.

stitcher
Code used in the following processes: discovery, event enrichment, and
root-cause analysis. See also, discovery stitcher, Event Gateway stitcher,
and RCA stitcher.

Structure Browser
GUI that enables you to investigate the health of device components in
order to isolate faults within a network device.

Topology Manager (ncp_model)
Stores the topology data following a discovery and sends the topology
data to the NCIM topology database where it can be queried using SQL.

WebTools
Specialized data retrieval tools that retrieve data from network devices and
can be launched from the network visualization GUIs, Network Views and
Network Hop View, or by specifying a URL in a web browser.

366 IBM Tivoli Network Manager IP Edition: Discovery Guide

Notices

This information applies to the PDF documentation set for IBM Tivoli Network
Manager IP Edition 3.9.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2006, 2013 367

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia
IBM Corporation
896471/H128B
76 Upper Ground
London
SE1 9PZ
United Kingdom
IBM Corporation
JBF1/SOM1 294
Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

368 IBM Tivoli Network Manager IP Edition: Discovery Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Trademarks
The terms in Table 151 are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

Table 151. IBM trademarks

AIX iSeries RDN

ClearQuest Lotus SecureWay

Cognos Netcool solidDB

Current NetView System z

DB2 Notes Tivoli

developerWorks OMEGAMON WebSphere

Enterprise
Storage Server

PowerVM z/OS

IBM PR/SM z/VM

Informix pSeries zSeries

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 369

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

370 IBM Tivoli Network Manager IP Edition: Discovery Guide

Index

A
about this publication ix
access databases 210
accessibility xiii
advanced discovery parameters

configuring 37
advanced partial discovery settings 157
agents 4, 303

activating with Discovery
Configuration GUI 27

and retrieved data 305
changing agent type 81
CiscoNATTelnet 123
collector discovery agents,

enabling 101
enabling partial discovery 156
identifying failed agents 167
NATGateway 125
NATNetScreen 123
NATTextFileAgent 123
troubleshooting 165

agents database schema 217
agents table 193
agents.definitions database table

schema 217
agents.definitions table 217
agents.status database table schema 218
agents.status table 218
agents.victims database table

schema 217
agents.victims table 217
AgentTemplate database synopsis 274
Alcatel5620Csv 96
Alcatel5620SamSoap 93
Alcatel5620SamSoapFindToFile 94
AOC

applying AOC changes to the
topology 148

EndNode class 150
NetworkDevice class 151

AOC file samples 150
AOC specific to device class 152
AOCs

creating 148
editing 148

ARP helper database 248
ARPhelper database 234
associated device addresses,

discovering 289
ATM devices

discovering connectivity among 321
audience for this publication ix
automatic discovery

definition of 1
automatic discovery, configuring 156

B
basic device information

discovering 297

broadcast
of discovery data to other

processes 293
broadcast pinging 37

C
cached data

ignored 271
CE routers

inferring the existence of 109
checklist for discovery 11
choosing a scoped or unscoped

discovery 12
ciscoFrameRelay database table

schema 258
ciscoFrameRelay table 258
classifying network devices 147
collector

Alcatel5620Csv 96
Alcatel5620SamSoap 93
Alcatel5620SamSoapFindToFile 94
GenericSVC 98

collector discovery agents
enabling 101

Collector finder
seeding with configuration file 56

collectors
configuration files 101
configuring 91
locations 101
overview 89
starting on the command line 99

comparing progress of discovery from the
GUI 132

complex discovery queries
samples 142

config table 183
configurable discovery data flow 294
configuration databases 183
configuration files

DiscoAgentReturns.filter 55
DiscoAgents.cfg 53
DiscoARPHelperSchema.cfg 55
DiscoDNSHelperSchema.cfg 56
DiscoFileFinderParseRules.cfg 58
DiscoHelperServerSchema.cfg 60
DiscoPingFinderSeeds.cfg 61
DiscoPingHelperSchema.cfg 62
DiscoSchema.cfg

context-sensitive discovery,
enabling 63

File finder devices, pinging 63
DiscoScope.cfg 64
DiscoSnmpHelperSchema.cfg 70
DiscoXmlRpcHelperSchema.cfg 74
helper databases 248
helpers 339
SnmpStackSecurityInfo.cfg 75
TelnetStackPasswords.cfg 78

Configuration Summary window
completing discovery 16
reviewing your settings 16

configuring advanced discovery
parameters 37

configuring advanced partial discovery
settings 157

configuring DNS helpers 31
configuring feedback settings for partial

discovery 157
configuring multicast discovery 34, 35
configuring Network Address

Translation 33
containers table 268
containment database table schema 260
containment information

discovery of 325
containment table 260
contents of this publication ix
context agent

within the discovery process 288
Context agent

enabling 8, 102
context-sensitive discovery

configuring 8, 102
limitations 8, 102

context-sensitive discovery agents 329
context-sensitive discovery, enabling 63
conventions, typeface xiv
core view of MPLS network 103
crashed agents 167
creating filters 28
custom tags

enabling network visualization based
on 178

enabling polling based on 178

D
daemons (Helper System) 340
data collection stage 280

first phase 281
second phase 281
The impact of the stages and phases

approach on DISCO processes 281
third phase 281

data flow
configuring 216
modifying 216
starting stitchers in 216

data processing stage 280, 281
database schema

SNMP helper 241
databases

agents 217
ARP helper 248
ARPhelper 234
Details 223
discovery 183
DNS helper

example configuration 236

© Copyright IBM Corp. 2006, 2013 371

databases (continued)
DNS helper database

example configuration 236
DNShelper 248
failover 270
finders 220
MODEL 265
Ping helper 249
process management 216
rediscoveryStore 265
scope 201
SNMP helper 250
stitchers 218
subprocess 220
Telnet helper 251
tracking discovery databases 253
translations 253
workingEntities 259
XMLRPC helper 252

databases for helpers 248
dataLibrary table 265
dead agents 167
debugging a NAT discovery 128
deleting filters 28
despatch table 275
detailed device information

discovering 298
Details database schema 223
Details.despatch database table

schema 224
Details.despatch table 224
Details.returns database table

schema 224
detectionFilter table 201
device 161
device access

configuring 4
configuring with GUI 23

device class hierarchy, changing 147
device connectivity

discovering 291
device detection

preventing with a filter 209
device existence

discovering 295
device existence, discovering 286
devices

detection, restricting 64
determining classification of 147
instantiation, restricting 64
interrogation, restricting 64
listing devices in use 147

devices or subnets
discovering manually 156

differentiating identical IP addresses in
different VPNs 107

DISCO
configuration databases 183

Disco plug-in 156
disco.agents database table schema 193
disco.agents table

example configuration of 200
disco.config database table schema 183
disco.config table

example configuration 199
disco.dynamicConfigFiles database table

schema 195

disco.events database table schema 197
disco.filterCustomTags database table

schema 198
disco.ipCustomTags database table

schema 198
disco.managedProcesses

example configuration 199
disco.managedProcesses database table

schema 190
disco.NATStatus database table

schema 195
disco.profilingData database table

schema 196
disco.status database table schema 191
disco.tempData database table

schema 196
DiscoAgentProcLayerAddLocalTags{}

section 84
DiscoAgentProcLayerAddTags{}

section 84
DiscoAgentReturns.filter configuration

file 55
DiscoAgents.cfg configuration file 53
DiscoARPHelperSchema.cfg 55
DiscoConfig.cfg

context-sensitive discovery,
enabling 63

File finder devices, pinging 63
DiscoDNSHelperSchema.cfg 56
DiscoFileFinderParseRules.cfg

configuration file 58
DiscoHelperServerSchema.cfg

configuration file 60
DiscoICMPGetTrace(); 83
DiscoPingFinderSeeds.cfg configuration

file 61
DiscoPingHelperSchema.cfg configuration

file 62
DiscoScope.cfg configuration file 64
DiscoSnmpGetAccessParameters(); 83
DiscoSnmpGetNextResponse(); 82
DiscoSnmpGetResponse(); 82
DiscoSnmpHelperSchema.cfg

configuration file 70
discovering associated device

addresses 289
discovering device details

context-sensitive 288
standard 287

discovering devices or subnets
manually 156

discovering the network using the
command-line interface 47

discovery 34, 35, 161
about 1
advanced settings 8
agent progress, monitoring from the

GUI 134
agent status 134
agents 4
cache 168
choosing scoped or unscoped 12
comparing with previous 132
components of 277
configuring advanced discovery

parameters 37
configuring DNS helpers 31

discovery (continued)
configuring multicast discovery 34
configuring Network Address

Translation 33
configuring remote neighbor partial

discovery settings 158
context-sensitive

configuring 8, 102
cycles 285
definition of 1
discovery agent status 134
discovery cache 168
EMS discoveries 88
EMS discovery 91
enabling discovery agents 27
filter values 30
identifying failed agents 167
Layer 2 14
Layer 3 14
managing network discovery 11
manual

using the GUI 156
monitoring 131
monitoring discovery agent progress

with GUI 134
monitoring ping finder progress with

GUI 133
monitoring with GUI 131
MPLS 104

configuring discoveries for 102
MPLS discovery 105
MPLS discovery methods 108
NAT 128
NAT discovery 115

activating 33
deactivating 33

NAT environment discovery 118
new discovery 168
optimizing 15
partial discovery from command

line 160
partial matching 294
ping finder progress, monitoring from

the GUI 133
ping finder status 133
planning for 11
post-configuration tasks for 128
progress, comparing from the

GUI 132
progress, monitoring from the

GUI 131
queries

complex 142
rediscovery 299
scheduling 155
scoped discovery 12
scoping multicast discovery 35
seeding 20
seeding File finder 20
seeding Ping finder 20
setting discovery filters 5
setting discovery parameters 1
setting SNMP access 23
setting Telnet access 23
specialized 9
specialized discoveries 88
specifying type of 14

372 IBM Tivoli Network Manager IP Edition: Discovery Guide

discovery (continued)
starting with the Discovery

Configuration GUI 43
status 131
step-by-step description of 285
stopping with the Discovery

Configuration GUI 43
troubleshooting

idle 168
illegal characters 169
missing devices 167

troubleshooting a long discovery 165
unscoped discovery 12
using EMS integration 295
using the command-line interface 47
with the wizard 12

discovery agent definition file
keywords 305

discovery agent progress, monitoring
from the GUI 134

discovery agents 303
Associated Address agent 303, 304
ATM 321
containment 325
context-sensitive agents 329
Details agent 303
discovery agent databases

agentTemplate database 303
Ethernet switches 311
extra information 81
filtering devices 50
identifying failed agents 167
IP layer agents, recommended 336
layer 2 338
layer 3 316, 338
MPLS 322
multicast 323
NAT gateways 324
on other protocols 327
protocol-specific 336
routing protocol discovery

agents 320
selecting 336
specialized agents 337
standard agents 336
task-specific 330
topology data stored in an EMS 320
troubleshooting 165
types 311

discovery agents, processing information
from 300

discovery configuration
advanced options 293
completing 16
reviewing 16

Discovery Configuration GUI 17
configuring advanced discovery

parameters 37
configuring DNS helpers 31
configuring multicast discovery 34,

35
configuring Network Address

Translation 33
defining discovery scope 17
enabling discovery agents 27
limitations for context-sensitive

discovery 8, 102

Discovery Configuration GUI (continued)
overview 17
seeding a discovery 20
seeding File finder 20
seeding Ping finder 20
setting discovery filters 5
setting SNMP access 23
setting Telnet access 23
starting discovery 43
stopping discovery 43

discovery data
broadcast to other processes 293

discovery databases 183
discovery parameters

GUI 17
mapping to schemas and tables 46

discovery process
overview 277

discovery progress
monitoring from the command

line 136
discovery progress, comparing from the

GUI 132
discovery progress, monitoring from the

GUI 131
discovery scope

adding new scope zone 17
databases 201
defining multiple inclusion zones 19
defining NAT zones 121
defining using Discovery

Configuration GUI 17
deleting scope zone 17
devices with out-of-scope

interfaces 70
editing existing scope zone 17
restricting device interrogation 64
restricting instantiation 64
sensitive devices 2
types of scoping 3

discovery stages and phases
data collection 280
data processing 280
overview 280

discovery timing 278
discovery zones

restricting discovery 3
DNS

configuring 7
DNS helper

configuring with configuration
file 56

configuring with GUI 31
DNS Helper

advanced parameters 37
DNS helper database 248
DNS helpers, configuring 31
DNSHelper.configuration database table

schema 56
DNShelper.methods database table

schema 56
Domain Name System

configuring 7
doNotCache table 273
dynamicConfigFiles table 195

E
edge view of MPLS network 103
editing filters 28
education

see Tivoli technical training xiv
Element Management Systems

configuring discovery of 91
EMS

configuring discovery of 91
EMS discoveries

configuring 88
EMS discovery

seeding with configuration file 100
EMS integration

overview 89
EMS Integration

components of 90
enabling

network visualization based on
custom tags 178

polling based on custom tags 178
enabling discovery agents 27
end nodes

filtering 14
EndNode class 150
enhanced layer 2 MPLS VPNs 103
entityByName database table

schema 263
entityByName table 263, 266
entityByNeighbor database table

schema 262
entityByNeighbor table 262, 267
environment variables, notation xiv
events 104
events table 197
example

GetCustomTag.stch 177
NAT discovery configuration 125

F
failed agents 167
failover

database 270
database schema 271
enabling 270

failover database configuration
example 273

failover.config database table
schema 271

failover.config table 271
example configuration 274

failover.doNotCache database table
schema 273

failover.doNotCache table
example configuration 274

failover.findRateDetails database table
schema 272

failover.restartPhaseAction database table
schema 273

failover.status database table
schema 272

failover.status table 272
fddi database table schema 259
fddi table 259
file finder 171

Index 373

File finder
activating 20
advanced parameters 37
configuring 229
database 229
deactivating 20
seeding with configuration file 229

File finder devices, pinging 63
File finder, seeding 20
fileFinder database 229
fileFinder.configuration database table

schema 229
fileFinder.parseRules database table

schema 229
filter condition, configuring 64
filterCustomTags table 198
filtering

end nodes 14
filtering devices sent to the agents 50
filters

combining restrictions 64
conditions 64
creating 28
deleting 28
editing 28
post-discovery, selecting 28
prediscovery, selecting 28
restrictions 64
values 30

finalEntity database table schema 259
finalEntity table 259
finders database schema 220
finders databases 225
finders, seeding 20
finders.despatch database table

schema 221
finders.despatch table 221
finders.pending database table

schema 222
finders.processing database table

schema 222
finders.rediscovery database table

schema 223
finders.returns database table

schema 221
finders.returns table 221
findRateDetails table 272
FnderRetProcessing stitcher, process flow

of 299
frameRelay database table schema 257
frameRelay table 257
full or partial rediscovery, overview 299
full rediscoveries, overview 300
full rediscovery 299
fullTopology database schema 262

G
GenericSVC 98
gent progress, monitoring from the

GUI 134
GetCustomTag.stch 177
glossary 363
GUI-based network discovery 17

H
Helper Manager 340
Helper Server

databases 233
Helper Server, see Helper System 339
Helper System

configuration file 340
configuring 9
daemons 340
databases 233
dynamic timeouts 340
Helper Manager 340
operation 340
overview 339
static timeout 340

helpers
databases 248
overview 339
reasons to configure 9

helpers, see Helper System 339
hsrp database table schema 258
hsrp table 258

I
identifying failed agents 167
inferMPLSPEs table 202
inferring the existence of CE routers 109
instantiateFilter table 203
instantiation

IP address
restricting instantiation based

on 64
Object ID

restricting instantiation based
on 64

restricting based on IP address 64
restricting based on Object ID 64
restricting based on OID 210

instrumentation database schema 256
interface data retrieved by agents 305
interfaceMapping database table

schema 261
interfaceMapping table 261
interrogation

IP address
restricting interrogation based

on 64
Object ID

restricting interrogation based
on 64

restricting based on IP address 64
restricting based on Object ID 64

IP layer agents, recommended 336
ipAddresses database table schema 256
ipAddresses table 256
ipCustomTags table 198
ipToBaseName database table

schema 253
ipToBaseName table 253
IPv6 subnet mask sizes

ping response times 22

K
keeping discovered topology

up-to-date 155
partial discovery agents 156

L
label data, fine-tuning 115
Label Switched Path (LSP)-Based

discovery 108
layer 2 VPNs 103
layer 3 MPLS VPNs 103
layers

mediation and processing 81
processing 83
rebuilding of 157

linger time
setting for a device 161

long discovery
troubleshooting 165

M
managedProcesses

example configuration 199
managedProcesses table 190
managing network discovery 11
manual update 161
manuals x
mapping discovery parameters to

schemas and table 46
master database schema 266
master.containers database table

schema 268
master.entityByName database table

schema 266
master.entityByNeighbor

adding information to 85
master.entityByNeighbor database table

schema 267
mediation and processing layers 81
mediation layer filter 83
mediation layer structure

SNMP and ICMP requests 82
model database schema 268
model.config database table schema 269
model.config table 269
model.profilingData database table

schema 269
model.profilingData table 269
model.statistics database table

schema 270
model.statistics table 270
monitoring discovery progress

from the command line 136
monitoring progress of discovery agents

from the GUI 134
monitoring progress of discovery from

the GUI 131
monitoring progress of ping finder from

the GUI 133
MPLS

configuring discoveries for 102
multicast

agents, enabling 34

374 IBM Tivoli Network Manager IP Edition: Discovery Guide

MPLS (continued)
TE

agent, configuring 112
agent, enabling 112
discovery modes 110

MPLS agents
enabling 105

MPLS discovery 105
configuration 104
configuring advanced 110
configuring stitchers 114
core view 103
edge view 103
methods 108
overview 103
pseudowires 103
restricting scope to VPNs and

VRFs 113
scoping requirements 113
SNMP agents configuration 106
Telnet agents configuration 106

MPLS discovery, about 103
MPLS networks

configuring discovery of 105
mplsTetable 203
multicast discovery

activating 34, 35
deactivating 34, 35

multicast pinging 37
multiphasing

effect on network traffic 284
multiphasing, criteria for 284

N
name database table schema 257
name table 257
NAT 128

containment model, activating 129
defining address spaces 120
enabling agents 122
enabling translation 120
gateways 7
gateways, configuring 33

NAT (Network Address Translation) 115
NAT database table schema 255
NAT discovery

activating 33
configuration example 125
deactivating 33
debugging 128
tracking the progress of 128

NAT domains
defining scope zones within 121

NAT environments
configuring discovery of 115, 118
viewing 129

NAT gateway devices
enabling agent for devices in private

address space 125
enabling agents for supported

devices 123
enabling agents for unsupported

devices 123
NAT table 255
NATAddressSpaceIds database table

schema 255

NATAddressSpaceIds table 255
NATStatus table 195
NATtemp database table schema 255
NATtemp table 255
NCHOME 339
ncp_disco

databases 183
ncp_model

databases 183
Network Address Translation

containment model, activating 129
defining address spaces 120
discovery process flow 117
discovery restrictions 117
dynamic environments 116
enabling agents 122
enabling translation 120
gateways 7
static 116
viewing NAT environments 129

Network Address Translation (NAT)
overview 115

network devices, classifying 147
network discovery

managing 11
using the command-line interface 47

network entity queries
sample 142

Network Manager glossary 363
network reliability

responding to requests 16
network visualization

enabling based on custom tags 178
NetworkDevice class 151

O
online publications x
optimizing the discovery 15
ordering publications x

P
partial discovery

advanced settings 157
definition of 1
running from command line 160
specifying feedback settings 157
starting from GUI 158

partial matching 294
partial rediscovery 299
pending table 222
phase manager 285
phased discovery, advantages of 283
phases, managing 285
Ping finder

activating 20
advanced parameters 37
configuring advanced parameters 37
configuring with command line 230
database 230
deactivating 20
seeding with configuration file 232

ping finder progress, monitoring from the
GUI 133

Ping finder, seeding 20

Ping helper
example configuration 62

Ping helper database 249
Ping helper database schema

description 238
example configuration 238

pingFinder database 230
pingFinder.configuration database table

schema 230
pingFinder.pingRules database table

schema 232
pinging

broadcast 37
multicast 37

pings
network response to 16

planning for discovery
checklist 11

pnniPeerGroup database table
schema 258

pnniPeerGroup table 258
polling

enabling based on custom tags 178
post-configuration tasks for 128
post-discovery filters

selecting in the GUI 28
postdiscovery filters

selecting in the GUI 28
prediscovery filters

selecting in the GUI 28
preventing detection of devices with a

filter 209
process management databases 216
processing layer 83
processing table 222
profilingData table 196
pseudowires 103
publications x

Q
queries

complex samples 142
device 139
network entity queries 142
samples for locating a devices 144
status 137

R
rebuilding topology layers, option

to 301
rediscoveredEntities table 265
rediscovery

completion 301
definition of 1
full 299
partial 299

rediscovery table 223
rediscoveryStore database 265
rediscoveryStore.dataLibrary database

table schema 265
rediscoveryStore.rediscoveredEntities

database table schema 265
remote neighbor partial discovery

settings 158

Index 375

removenode 161
removing devices from the network 160
reports

troubleshooting discovery with 163
restartPhaseAction table 273
restricting device detection, interrogation,

and instantiation 64
restricting device instantiation 64
restricting device interrogation 64
restricting discovery with zones 3
restricting instantiation 210

complex example 64
restricting instantiation based on IP

address 64
restricting instantiation based on Object

ID 64
restricting interrogation based on IP

address 64
restricting interrogation based on Object

ID 64
retrieving extra information 81
returns table 224, 276
Route Target (RT)-Based discovery 108
routing protocol discovery agents 320
rules

DiscoICMPGetTrace(); 83
DiscoSnmpGetAccessParameters 83
DiscoSnmpGetNextResponse(); 82
DiscoSnmpGetResponse(); 82

S
SAE 104
scheduled discovery

definition of 1
scheduling a discovery 155
scope database

example configuration 207
scope database schema 201
Scope tab

defining zones with 17
scope zone

adding 17
deleting 17
editing 17

scope.detectionFilter database table
schema 201

scope.inferMPLSPEs database table
schema 202

scope.instantiateFilter database table
schema 203

scope.mplsTe database table schema 203
scope.multicastGroup database table

schema 204
scope.multicastGroup table 204
scope.multicastSource database table

schema 205
scope.multicastSource table 205
scope.special database table schema 206
scope.zones database table schema 207
scope.zones table

example configuration 208
scoped discovery 12
scoping

defined 2
importance of 2

scratchTopology database schema 263

seeding discovery 20
with NAT gateway addresses 122

seeding discovery with NAT gateway
addresses 122

seeding File finder 20
seeding Ping finder 20
seeding the Collector finder

configuration file 56
seeding the File finder

configuration file 229
seeding the Ping finder

configuration file 232
seeds

specifying 4
Service Affected Events (SAE) 104
setting discovery filters 5
setting SNMP access 23
setting Telnet access 23
setting the linger time for a device 161
SNMP

configuring access to network devices
with GUI 23

daemons (Helper System) 340
SNMP access

community strings for 13
configuring with wizard 13

SNMP access, configuring 23
SNMP agents for MPLS 106
SNMP community strings 4
SNMP helper

advanced parameters 37
SNMP helper database 250
SNMP helper database example

configuration 241
SNMP helper database schema 241
SNMP requests

network response to 16
snmpStack.multibyteObjects 213
SnmpStackSecurityInfo.cfg configuration

file 75
special table 206
specialized agents, recommended 337
specialized discoveries 9

configuring 88
types of 88

staged discovery, advantages of 283
stages

data processing 281
standard agents, recommended 336
starting discovery 43
status messages

discovery 165
status table 191
stitchers

example 177
GetCustomTag.stch 177
list of default discovery stitchers 341

stitchers database schema 218
stitchers.actions database table

schema 220
stitchers.actions table 220
stitchers.definitions database table

schema 218
stitchers.definitions table 218
stitchers.status database table

schema 219
stitchers.status table 219

stitchers.triggers database table
schema 219

stitchers.triggers table 219
stopping discovery 43
subNet database table schema 257
subNet table 257
subprocess databases 220
support information xiv

T
tables

agents.definitions 217
agents.status 218
agents.victims 217
ciscoFrameRelay 258
collectorFinder.collectorRules 56
containers 268
containment 260
dataLibrary 265
despatch 224, 275
detectionFilter 201
DNSHelper.configuration 56
DNShelper.methods 56
doNotCache 273
entityByName 263, 266
entityByNeighbor 262, 267
failover.config 271
failover.status 272
fddi 259
fileFinder.configuration 229
fileFinder.parseRules 229
finalEntity 259
finders.despatch 221
finders.returns 221
findRateDetails 272
frameRelay 257
hsrp 258
inferMPLSPEs 202
instantiateFilter 203
interfaceMapping 261
ipAddresses 256
ipToBaseName 253
managedProcesses 190
master.entityByNeighbor 85
model.config 269
model.profilingData 269
model.statistics 270
mplsTe 203
name 257
NAT 255
NATAddressSpaceIds 255
NATStatus 195
NATtemp 255
pending 222
pingFinder.configuration 230
pingFinder.pingRules 232
pnniPeerGroup 258
processing 222
rediscoveredEntities 265
rediscovery 223
restartPhaseAction 273
returns 224, 276
scope.multicastGroup 204
scope.multicastSource 205
special 206
status 191

376 IBM Tivoli Network Manager IP Edition: Discovery Guide

tables (continued)
stitchers.actions 220
stitchers.definitions 218
stitchers.status 219
stitchers.triggers 219
subNet 257
telnetHelper.configuration 71
telnetHelper.deviceConfig 71
vlan 257
vlans 254
zones 207

Telnet access, configuring 23
Telnet access, configuring with

wizard 14
Telnet access, defining 78
Telnet agents for MPLS 106
Telnet helper

advanced parameters 37
configuring 71

Telnet helper database 251
Telnet helper database example

configuration 243
Telnet helper database schema 243
Telnet parameters 4
telnetHelper.configuration database table

schema 71
telnetHelper.deviceConfig database table

schema 71
TelnetStackPasswords.cfg configuration

file 78
tempData table 196
Tivoli software information center x
Tivoli technical training xiv
topology

creating 292
databases 262, 265
updating 155

topology enrichment 171
topology layers

rebuilding of 157
topology, creating

NAT information 118
tracking the discovery

databases 253
training, Tivoli technical xiv
translations database 253
TrapMux

command-line options 86
configuring 86

traps 361
managing 85

troubleshooting
discovery

illegal characters 169
missing devices 167

discovery, idle 168
troubleshooting a long discovery 165
troubleshooting discovery

with reports 163
troubleshooting discovery agents 165
typeface conventions xiv

U
unclassified devices

classifying 148
unscoped discovery 12

update 161
updating topology 155

V
variables, notation for xiv
visualization

enabling based on custom tags 178
vlan database table schema 257
vlan table 257
vlans database table schema 254
vlans table 254
VPN naming conventions 114
VPNs

differentiating identical IP
addresses 107

VRF names in RT-based discoveries 109

W
wizard

choosing scoped or unscoped
discovery 12

configuring SNMP access 13
configuring Telnet access 14
discovery with 12
filtering out end nodes 14
indicating network reliability 16
optimizing the discovery 15
pings

network response to 16
reviewing configuration settings 16
scoped discovery 12
SNMP requests

network response to 16
specifying type of discovery

Layer 2 14
Layer 3 14

starting 12
unscoped discovery 12

wizard windows
Configuration Summary 16
Discovery Optimization 15
Discovery Scope 12
Discovery Type 14
End Node Discovery 14
Network Reliability 16
SNMP Community Strings 13
SNMP Password Properties 13
Telnet Access 14
Telnet Passwords Properties 14

wizard-based network discovery 12
workingEntities database 259

X
XML-RPC helper

example configuration 74
XMLRPC helper database 252
XMLRPC helper database example

configuration 245
XMLRPC helper database schema 245

Z
zones

defining with the Scope tab 17
restricting discovery 3

zones table 207

Index 377

378 IBM Tivoli Network Manager IP Edition: Discovery Guide

����

Printed in the Republic of Ireland

SC27-2762-04

	Contents
	Tables
	About this publication
	Audience
	What this publication contains
	Publications
	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this publication

	Chapter 1. About discovery
	About types of discovery
	Scopes
	Types of scoping
	Defining discovery zones to restrict discovery

	Seeds
	Device access
	Agents
	Filters
	Domain Name System
	Network address translation
	Advanced settings
	Context-sensitive discovery
	Helpers
	Specialized discoveries

	Chapter 2. Configuring network discovery
	Planning for discovery
	Discovering the network using the wizard
	Launching the wizard
	Choosing a scoped or unscoped discovery
	Configuring SNMP access using the wizard
	Configuring Telnet access using the wizard
	Specifying type of discovery
	Optimizing the discovery
	Indicating the reliability of your network
	Reviewing the configuration

	Discovering the network using the GUI
	Scoping discovery
	Defining multiple inclusion zones

	Seeding discovery
	IPv6 subnet mask sizes

	Configuring device access
	Activating agents
	Setting discovery filters
	Available filter values

	Configuring Domain Name System
	Configuring NAT translation
	Configuring a multicast discovery
	Enabling the multicast agents
	Scoping a multicast discovery

	Advanced discovery parameters
	Starting a discovery
	Schemas and tables for GUI discovery parameters

	Discovering the network using the command-line interface
	Discovery configuration files
	Discovery agent definition files
	DiscoAgents.cfg configuration file
	DiscoAgentReturns.filter configuration file
	DiscoARPHelperSchema.cfg configuration file
	DiscoCollectorFinderSeeds.cfg configuration file
	DiscoDNSHelperSchema.cfg configuration file
	DiscoFileFinderParseRules.cfg configuration file
	DiscoHelperServerSchema.cfg configuration file
	DiscoPingFinderSeeds.cfg configuration file
	DiscoPingHelperSchema.cfg configuration file
	DiscoConfig.cfg configuration file
	DiscoScope.cfg configuration file
	DiscoSnmpHelperSchema.cfg configuration file
	DiscoTelnetHelperSchema.cfg configuration file
	DiscoXmlRpcHelperSchema.cfg configuration file
	SnmpStackSecurityInfo.cfg configuration file
	TelnetStackPasswords.cfg configuration file

	Retrieving extra information
	Changing the agent type
	Mediation and processing layers
	The mediation layer
	Mediation layer filter
	The processing layer
	Special case: adding information to the master.entityByNeighbor table

	Administering traps
	About trap management
	Starting the SNMP trap multiplexer
	Forwarding traps
	SNMP trap multiplexer commands

	Configuring specialized discoveries
	Configuring EMS discoveries
	About EMS integration
	Configuring an EMS discovery

	Configuring a context-sensitive discovery
	Configuring MPLS discoveries
	About MPLS discovery
	Configuring standard MPLS discovery
	Configuring advanced MPLS discovery

	Configuring NAT discoveries
	About Network Address Translation
	About NAT discovery
	Configuring a NAT discovery
	Post-configuration NAT tasks

	Chapter 3. Monitoring network discoveries
	Monitoring network discovery from the GUI
	Monitoring discovery progress
	Comparing discoveries
	Monitoring ping finder progress
	Monitoring discovery agent progress

	Monitoring discovery from the command line.
	Sample discovery status queries
	Sample device queries
	Sample network entity queries
	Sample complex discovery queries
	Sample queries for locating a specific device

	Chapter 4. Classifying network devices
	Changing the device class hierarchy
	Listing the existing device classes
	Creating and editing AOC files
	Applying AOC changes to the topology and to the reports

	AOC file samples
	EndNode class
	NetworkDevice class
	AOC specific to device class

	Chapter 5. Keeping discovered topology up-to-date
	Scheduling a discovery
	Configuring automatic discovery
	Manually discovering a device or subnet
	Manually discovering a device or subnet using the GUI
	Enabling partial discovery agents
	Configuring advanced partial discovery settings
	Starting partial discovery from the GUI

	Manually discovering a device or subnet from the command line

	Removing a device from the network
	Setting the linger time for a device

	Manually updating device details

	Chapter 6. Troubleshooting discovery
	Troubleshooting discovery with reports
	Monitoring discovery status
	Process flow for creating discovery events
	Monitoring discovery status messages

	Troubleshooting discovery agents
	Troubleshooting an unusually long discovery
	Identifying failed agents

	Troubleshooting missing devices
	Troubleshooting an idle discovery
	Removing discovery cache files
	Troubleshooting illegal characters in the Informix database

	Chapter 7. Enriching the topology
	Adding tags to entities
	Customizing the discovery
	Adding tags to entities using the File finder
	Adding tags to entities using custom tag tables

	Enabling polling and visualization using the custom tags
	Visualizing the enriched topology
	Polling the enriched topology

	Appendix A. Discovery databases
	Discovery engine database
	disco.config table
	disco.managedProcesses table
	disco.status table
	disco.agents table
	disco.NATStatus table
	disco.dynamicConfigFiles table
	disco.tempData table
	disco.profilingData table
	disco.events table
	disco.ipCustomTags table
	disco.filterCustomTags table
	Example configuration of the disco.config table
	Example configuration of the disco.managedProcesses table
	Example configuration of the disco.agents table

	Discovery scope database
	disco.scope database schema
	scope.detectionFilter table
	inferMPLSPEs table
	scope.instantiateFilter table
	mplsTe table
	scope.multicastGroup table
	scope.multicastSource table
	scope.special table
	scope.zones table

	Example scope database configuration
	Configuration of the scope.zones table
	Preventing the detection of devices with a filter
	Restricting instantiation based on Object ID

	Access databases
	snmpStack database
	snmpStack.accessParameters database table
	snmpStack.configuration database table
	snmpStack.conversion database table
	snmpStack.multibyteObjects table
	snmpStack.verSecurityTable database table

	telnetStack database
	telnetStack.passwords database table

	Process management databases
	Configuring the data flow: starting stitchers on-demand
	agents database schema
	agents.definitions table
	agents.victims table
	agents.status table

	Stitchers database schema
	stitchers.definitions table
	stitchers.triggers table
	stitchers.status table
	stitchers.actions table

	Subprocess databases
	finders database schema
	finders.despatch table
	finders.returns table
	finders.pending table
	finders.processing table
	finders.rediscovery table

	Details database schema
	details.despatch table
	details.returns table

	Finders databases
	collectorFinder database
	collectorFinder.collectorRules database table
	collectorFinder.configuration database table

	fileFinder database
	fileFinder.configuration database table
	fileFinder.parseRules database table

	pingFinder database
	pingFinder.configuration database table
	pingFinder.pingFilter database table
	pingFinder.pingRules database table
	pingFinder.scope database table

	The Helper Server databases
	The ARPhelper database
	DNS helper database schema
	Ping helper database schema
	SNMP helper database schema
	Telnet helper database schema
	XMLRPC helper database schema

	Individual helpers databases
	The ARP helper database
	The DNS helper database
	The Ping helper database
	The SNMP helper database
	The Telnet helper database
	The XMLRPC helper database

	Tracking discovery databases
	translations database
	translations.ipToBaseName table
	translations.vlans table
	translations.NAT table
	translations.NATtemp
	translations.NATAddressSpaceIds table

	instrumentation database schema
	instrumentation.ipAddresses table
	instrumentation.name table
	instrumentation.subNet table
	instrumentation.vlan table
	instrumentation.frameRelay table
	instrumentation.ciscoFrameRelay table
	instrumentation.hsrp table
	instrumentation.pnniPeerGroup table
	instrumentation.fddi table

	workingEntities database
	workingEntities.finalEntity table
	workingEntities.containment table
	workingEntities.interfaceMapping

	Working topology databases
	fullTopology database schema
	fullTopology.entityByNeighbor table

	scratchTopology database schema
	scratchTopology.entityByName table

	rediscoveryStore database
	rediscoveryStore.dataLibrary table
	rediscoveryStore.rediscoveredEntities table

	Topology manager database
	master database schema
	master.entityByName table
	master.entityByNeighbor table
	master.containers table

	model database schema
	model.config table
	model.profilingData
	model.statistics table

	Failover database
	Ignored cached data
	The failover database schema
	failover.config table
	failover.status table
	failover.findRateDetails table
	failover.doNotCache table
	failover.restartPhaseAction table

	Example failover database configuration
	Example configuration of the failover.config table
	Example configuration of the failover.doNotCache table

	Agent Template database
	Discovery agent despatch table
	Discovery agent returns table

	Appendix B. Discovery process
	Discovery subprocesses
	Discovery timing
	Discovery stages and phases
	Data processing stage
	Data collection stage
	Advantages of staged discovery
	Effect of discovery multiphasing on network traffic

	Criteria for multiphasing
	Managing the phases

	Discovery cycles
	Discovering device existence
	Discovering device details (standard)
	Discovering device details (context-sensitive)
	Discovering associated device addresses
	Discovering device connectivity
	Creating the topology
	Broadcast of discovery data

	Advanced discovery configuration options
	Configurable discovery data flow
	Partial matching

	Discovery process with EMS integration
	Discovering device existence with collectors
	Discovering basic device information
	Discovering detailed device information

	Rediscovery
	Full and partial rediscovery
	Process flow of the FnderRetProcessing stitcher
	Processing information from discovery agents during rediscovery
	Full rediscoveries

	Rediscovery completion
	Option to rebuild topology layers

	Appendix C. Discovery agents
	Agents
	Details agent
	Associated Address (AssocAddress) agent
	Interface data retrieved by agents
	Discovery agent definition file keywords

	Types of agents
	Discovering connectivity among Ethernet switches
	Connectivity at the layer 3 network layer
	Topology data stored in an EMS
	Discovering connectivity among ATM devices
	Discovering MPLS devices
	Multicast agents
	Discovering NAT gateways
	Discovering containment information
	Discovery agents on other protocols
	Context-sensitive discovery agents
	Task-specific discovery agents
	Discovery agents for IPv6

	Guidance for selecting agents
	Which IP layer agents to use
	Which standard agents to use
	Which specialized agents to run
	Suggested agents for a layer 3 discovery
	Suggested agents for a layer 2 discovery

	Appendix D. Helper System
	Helpers
	Helper System operation
	Dynamic timeouts

	Appendix E. Discovery stitchers
	Main discovery stitchers

	Appendix F. Types of traps
	Appendix G. Network Manager glossary
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

